All Issue

2019 Vol.21, Issue 5 Preview Page

September 2019. pp. 641-656
Abstract


References
1 

Bieniawski, Z.T., Celada, B., Galera, J.M., Tardáguila, I. (2009), “Prediction of cutter wear using RME”, Proceedings of the ITA-AITES 2009 World Tunnel Congress and 35th ITA General Assembly, Budapest.

2 

Bruland, A. (2000), Hard rock tunnel boring: Background and discussion, Ph.D. Thesis, Norwegian University of Science and Technology, pp. 14-31.

3 

Burges, C.J.C. (1998), “A tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp. 121-167.

10.1023/A:1009715923555
4 

Cortes, C., Vapnik, V. (1995), “Support-vector networks”, Machine Learning, Vol. 20, No. 3, pp. 273-297.

10.1007/BF00994018
5 

Gehring, K. (1995), “Prognosis of advance rates and wear for underground mechanized excavations (in German)”, Felsbau, Vol. 13, No. 6, pp. 439-448.

6 

Jeong, H.Y., Lee, S.D., Jeon, S.W. (2014), “Estimation of design parameters of TBM using punch penetration and Cerchar abrasiveness test”, Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 237-248.

10.9711/KTAJ.2014.16.2.237
7 

Kim, D.Y., Farrokh, E., Jung, J.H., Lee, J.W., Lee, S.H. (2017), “Development of a new test method for the prediction of TBM disc cutters life”, Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 475-488.

10.9711/KTAJ.2017.19.3.475
8 

Ko, T.Y., Yoon, H.J., Son, Y.J. (2014), “A comparative study on the TBM disc cutter wear prediction model”, Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 6, pp. 533-542.

10.9711/KTAJ.2014.16.6.533
9 

La, Y.S., Kim, M.I., Kim, B. (2019), “Development of penetration rate prediction model using shield TBM excavation data”, Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 4, pp. 519-534.

10 

Lee, J.S., Choi, I.Y., Kim, I.K., Hwang, S.H. (2018), “Tamping and renewal optimization of ballasted track using track measurement data and genetic algorithm”, Journal of Transportation Engineering, Part A: systems, Vol. 144, No. 3, pp. 04017081-1:8.

10.1061/JTEPBS.0000120
11 

Rostami, J., Ozdemir, L. (1993), “A new model for performance prediction of hard rock TBMs”, Proceedings of the Rapid Excavation and Tunneling Conference, Boston, pp. 793-809.

12 

Smola, A.J., Scholkopf, B. (2004), “A tutorial on support vector regression”, Statistics and Computing, Vol. 14, No. 3, pp. 199-222.

10.1023/B:STCO.0000035301.49549.88
13 

Vapnik, V.N. (1995), The Nature of Statistical Learning Theory, Springer, New York, pp. 119-166.

10.1007/978-1-4757-2440-0_6
14 

Yu, S.H. (2007), A study on rock cutting behavior by TBM disc cutter, Master's Thesis, Seoul National University, pp. 21-74.

Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 21
  • No :5
  • Pages :641-656
  • Received Date :2019. 06. 13
  • Revised Date :2019. 07. 08
  • Accepted Date : 2019. 07. 19