All Issue

2021 Vol.23, Issue 1 Preview Page

Research Paper

January 2021. pp. 13-24
Abstract
References
1
Barton, N., Lien, R., Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mechanics, Vol. 6, No. 4, pp. 189-236. 10.1007/BF01239496
2
Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", The Civil Engineer in South Africa, Vol. 15, No. 12, pp. 335-343.
3
British Standard Institution (1999), BS 5930: Soils for civil engineering purpose: classification, London.
4
Han, S.Y., Kwak, N.S., Oh, T., Lee, S.W. (2020), "Classification of pilots' mental states using a multimodal deep learning network", Biocybernetics and Biomedical Engineering, Vol. 40, No. 1, pp. 324-336. 10.1016/j.bbe.2019.12.002
5
Hong, C.H., Kim, J., Ryu, H.H., Cho, G.C. (2020), "Study on Q-value prediction ahead of tunnel excavation face using recurrent neural network", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 3, pp. 239-248.
6
Jung, J.H., Chung, H.Y., Kwon, Y.S., Lee, I.M. (2019), "An ANN to predict ground condition ahead of tunnel face using TBM operational data", KSCE Journal of Civil Engineering, Vol. 23, No. 7, pp. 3200-3206. 10.1007/s12205-019-1460-9
7
Kim, J.J., Ryu, H.H., Kim, K.Y., Hong, S.Y., Jung, J.H., Bae, D.S. (2020a), "Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 6, pp. 623-641.
8
Kim, T.H., Ko, T.Y., Park, Y.S., Kim, T.K., Lee, D.H. (2020b), "Prediction of uniaxial compressive strength of rock using shield TBM machine data and machine learning technique", Tunnel and Underground Space, Vol. 30, No. 3, pp. 214-225.
9
Ko, T.Y., Pak, Y.T., Kim, T.K., Son, S.M. (2017), "Effect of rock abrasiveness on slurry shield tunneling", International Conference on Tunnel Boring Machines in Difficult Grounds (TBM DiGs), Wuhan, China, pp. 1-8.
10
Kwak, N.S., Müller, KR., Lee, S.W. (2017), "A convolutional neural network for steady state visual evoked potential classification under ambulatory environment", PloS one, Vol. 12, No. 2, e0172578. 10.1371/journal.pone.017257828225827PMC5321422
11
Lee, H.L., Song, K.I., Cho, G.C. (2016), "Analysis on prediction models of TBM performance: a review", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 2, pp. 245-256. 10.9711/KTAJ.2016.18.2.245
12
Singapore Standard (2003), CP4:2003 Code practice for foundations, Singapore. 10.1016/S0958-2118(03)01013-9
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 23
  • No :1
  • Pages :13-24
  • Received Date :2020. 11. 21
  • Revised Date :2020. 12. 28
  • Accepted Date : 2020. 12. 30