Research Paper
Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W., Serhani, M.A. (2021), "Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures", Sensors, Vol. 21, No. 5, 1688.
10.3390/s2105168833804490PMC7957757Alidoost, F., Austen, G., Hahn, M. (2022), "A multi-camera mobile system for tunnel inspection", iCity. Transformative Research for the Livable, Intelligent, and Sustainable City, Springer, pp. 211-224.
10.1007/978-3-030-92096-8_13Badrinarayanan, V., Kendall, A., Cipolla, R. (2017), "SegNet: a deep convolutional encoder-decoder architecture for image segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495.
10.1109/TPAMI.2016.264461528060704Bae, H., Jang, K., An, Y.K. (2021), "Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in situ bridges", Structural Health Monitoring, Vol. 20, No. 4, pp. 1428-1442.
10.1177/1475921720917227Balaguer, C., Montero, R., Victores, J.G., Martínez, S., Jardón, A. (2014), "Towards fully automated tunnel inspection: a survey and future trends", Proceedings of the 31st ISARC, Sydney, Australia, pp. 19-33.
10.22260/ISARC2014/0005Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 801-818.
10.1007/978-3-030-01234-2_49Dynamic UNet, Unet model using PixelShuffle ICNR upsampling that can be built on top of any pretrained architecture, https://docs.fast.ai/vision.models.unet.html (November 1, 2024).
Guo, J., Liu, P., Xiao, B., Deng, L., Wang, Q. (2024), "Surface defect detection of civil structures using images: Review from data perspective", Automation in Construction, Vol. 158, 105186.
10.1016/j.autcon.2023.105186Guo, J., Wang, Q., Li, Y., Liu, P. (2020), "Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network", Computer-Aided Civil and Infrastructure Engineering, Vol. 35, No. 12, pp. 1403-1418.
10.1111/mice.12578He, K., Zhang, X., Ren, S., Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778.
10.1109/CVPR.2016.90Kaggle, Crack segmentation dataset, https://www.kaggle.com/datasets/lakshaymiddha/crack-segmentation-dataset (September 1, 2024).
Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Proceedings of the Advances in Neural Information Processing Systems 25, NIPS, Stateline, pp. 1097-105.
Kumar, S.S., Wang, M., Abraham, D.M., Jahanshahi, M.R., Iseley, T., Cheng, J.C.P. (2020), "Deep learning-based automated detection of sewer defects in CCTV videos", Journal of Computing in Civil Engineering, Vol. 34, No. 1, 04019047.
10.1061/(ASCE)CP.1943-5487.0000866Lee, C., Kim, D., Kim, D. (2024), "Analysis of the application of image quality assessment method for mobile tunnel scanning system", Journal of Korean Tunnelling and Underground Space Association, Vol. 26, No. 4, pp. 365-384.
10.9711/KTAJ.2024.26.4.365Li, D., Xie, Q., Gong, X., Yu, Z., Xu, J., Sun, Y., Wang, J. (2021), "Automatic defect detection of metro tunnel surfaces using a vision-based inspection system", Advanced Engineering Informatics, Vol. 47, 101206.
10.1016/j.aei.2020.101206Liu, Y., Yeoh, J.K.W., Chua, D.K.H. (2020), "Deep learning-based enhancement of motion blurred UAV concrete crack images", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020028.
10.1061/(ASCE)CP.1943-5487.0000907Liu, Z., Cao, Y., Wang, Y., Wang, W. (2019), "Computer vision-based concrete crack detection using U-Net fully convolutional networks", Automation in Construction, Vol. 104, pp. 129-139.
10.1016/j.autcon.2019.04.005Long, J., Shelhamer, E., Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 3431-3440.
10.1109/CVPR.2015.7298965Mei, Q., Gül, M., Azim, M.R. (2020), "Densely connected deep neural network considering connectivity of pixels for automatic crack detection", Automation in Construction, Vol. 110, 103018.
10.1016/j.autcon.2019.103018Miao, P., Srimahachota, T. (2021), "Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques", Construction and Building Materials, Vol. 293, 123549.
10.1016/j.conbuildmat.2021.123549Ni, F., Zhang, J., Chen, Z. (2019), "Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning", Computer-Aided Civil and Infrastructure Engineering, Vol. 34, No. 5, pp. 367-384.
10.1111/mice.12421Pan, S.J., Yang, Q. (2010), "A survey on transfer learning", IEEE Transactions on Knowledge and Data Engineering, Vol. 22, No. 10, pp. 1345-1359.
10.1109/TKDE.2009.191Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016), "You only look once: unified, real-time object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 779-788.
10.1109/CVPR.2016.91Ren, S., He, K., Girshick, R., Sun, J. (2017), "Faster R-CNN: towards real-time object detection with region proposal networks", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149.
10.1109/TPAMI.2016.257703127295650Shin, H., Ahn, Y., Tae, S., Gil, H., Song, M., Lee, S. (2021), "Enhancement of multi-class structural defect recognition using generative adversarial network", Sustainability, Vol 13, No. 22, 12682.
10.3390/su132212682Simonyan, K., Zisserman, A. (2015), "Very deep convolutional networks for large-scale image recognition", ArXiv, Vol. 1409, 1556.
10.48550/arXiv.1409.1556Spencer Jr, B.F., Hoskere, V., Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, Vol. 5, No. 2, pp. 199-222.
10.1016/j.eng.2018.11.030Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 1-9.
10.1109/CVPR.2015.7298594Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016), "Rethinking the inception architecture for computer vision", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 2818-2826.
10.1109/CVPR.2016.308Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L. (2020), "SOLO: segmenting objects by locations", Proceedings of the Computer Vision - ECCV 2020: Part XVIII 16, Glasgow, UK, pp. 649-665.
10.1007/978-3-030-58523-5_38Wei, F., Yao, G., Yang, Y., Sun, Y. (2019), "Instance-level recognition and quantification for concrete surface bughole based on deep learning", Automation in Construction, Vol 107, 102920.
10.1016/j.autcon.2019.102920- Publisher :Korean Tunneling and Underground Space Association
- Publisher(Ko) :한국터널지하공간학회
- Journal Title :Journal of Korean Tunnelling and Underground Space Association
- Journal Title(Ko) :한국터널지하공간학회 논문집
- Volume : 26
- No :6
- Pages :777-792
- Received Date : 2024-11-01
- Revised Date : 2024-11-20
- Accepted Date : 2024-11-20
- DOI :https://doi.org/10.9711/KTAJ.2024.26.6.777