All Issue

2024 Vol.26, Issue 6 Preview Page

Research Paper

30 November 2024. pp. 777-792
Abstract
References
1

Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W., Serhani, M.A. (2021), "Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures", Sensors, Vol. 21, No. 5, 1688.

10.3390/s2105168833804490PMC7957757
2

Alidoost, F., Austen, G., Hahn, M. (2022), "A multi-camera mobile system for tunnel inspection", iCity. Transformative Research for the Livable, Intelligent, and Sustainable City, Springer, pp. 211-224.

10.1007/978-3-030-92096-8_13
3

Badrinarayanan, V., Kendall, A., Cipolla, R. (2017), "SegNet: a deep convolutional encoder-decoder architecture for image segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495.

10.1109/TPAMI.2016.264461528060704
4

Bae, H., Jang, K., An, Y.K. (2021), "Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in situ bridges", Structural Health Monitoring, Vol. 20, No. 4, pp. 1428-1442.

10.1177/1475921720917227
5

Balaguer, C., Montero, R., Victores, J.G., Martínez, S., Jardón, A. (2014), "Towards fully automated tunnel inspection: a survey and future trends", Proceedings of the 31st ISARC, Sydney, Australia, pp. 19-33.

10.22260/ISARC2014/0005
6

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H. (2018), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, pp. 801-818.

10.1007/978-3-030-01234-2_49
7

Dynamic UNet, Unet model using PixelShuffle ICNR upsampling that can be built on top of any pretrained architecture, https://docs.fast.ai/vision.models.unet.html (November 1, 2024).

8

Fastai, https://docs.fast.ai/ (September 1, 2024).

9

Guo, J., Liu, P., Xiao, B., Deng, L., Wang, Q. (2024), "Surface defect detection of civil structures using images: Review from data perspective", Automation in Construction, Vol. 158, 105186.

10.1016/j.autcon.2023.105186
10

Guo, J., Wang, Q., Li, Y., Liu, P. (2020), "Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network", Computer-Aided Civil and Infrastructure Engineering, Vol. 35, No. 12, pp. 1403-1418.

10.1111/mice.12578
11

He, K., Zhang, X., Ren, S., Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770-778.

10.1109/CVPR.2016.90
12

Kaggle, Crack segmentation dataset, https://www.kaggle.com/datasets/lakshaymiddha/crack-segmentation-dataset (September 1, 2024).

13

Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Proceedings of the Advances in Neural Information Processing Systems 25, NIPS, Stateline, pp. 1097-105.

14

Kumar, S.S., Wang, M., Abraham, D.M., Jahanshahi, M.R., Iseley, T., Cheng, J.C.P. (2020), "Deep learning-based automated detection of sewer defects in CCTV videos", Journal of Computing in Civil Engineering, Vol. 34, No. 1, 04019047.

10.1061/(ASCE)CP.1943-5487.0000866
15

Lee, C., Kim, D., Kim, D. (2024), "Analysis of the application of image quality assessment method for mobile tunnel scanning system", Journal of Korean Tunnelling and Underground Space Association, Vol. 26, No. 4, pp. 365-384.

10.9711/KTAJ.2024.26.4.365
16

Li, D., Xie, Q., Gong, X., Yu, Z., Xu, J., Sun, Y., Wang, J. (2021), "Automatic defect detection of metro tunnel surfaces using a vision-based inspection system", Advanced Engineering Informatics, Vol. 47, 101206.

10.1016/j.aei.2020.101206
17

Liu, Y., Yeoh, J.K.W., Chua, D.K.H. (2020), "Deep learning-based enhancement of motion blurred UAV concrete crack images", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020028.

10.1061/(ASCE)CP.1943-5487.0000907
18

Liu, Z., Cao, Y., Wang, Y., Wang, W. (2019), "Computer vision-based concrete crack detection using U-Net fully convolutional networks", Automation in Construction, Vol. 104, pp. 129-139.

10.1016/j.autcon.2019.04.005
19

Long, J., Shelhamer, E., Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 3431-3440.

10.1109/CVPR.2015.7298965
20

Mei, Q., Gül, M., Azim, M.R. (2020), "Densely connected deep neural network considering connectivity of pixels for automatic crack detection", Automation in Construction, Vol. 110, 103018.

10.1016/j.autcon.2019.103018
21

Miao, P., Srimahachota, T. (2021), "Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques", Construction and Building Materials, Vol. 293, 123549.

10.1016/j.conbuildmat.2021.123549
22

Ni, F., Zhang, J., Chen, Z. (2019), "Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning", Computer-Aided Civil and Infrastructure Engineering, Vol. 34, No. 5, pp. 367-384.

10.1111/mice.12421
23

Pan, S.J., Yang, Q. (2010), "A survey on transfer learning", IEEE Transactions on Knowledge and Data Engineering, Vol. 22, No. 10, pp. 1345-1359.

10.1109/TKDE.2009.191
24

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016), "You only look once: unified, real-time object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 779-788.

10.1109/CVPR.2016.91
25

Ren, S., He, K., Girshick, R., Sun, J. (2017), "Faster R-CNN: towards real-time object detection with region proposal networks", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149.

10.1109/TPAMI.2016.257703127295650
26

Shin, H., Ahn, Y., Tae, S., Gil, H., Song, M., Lee, S. (2021), "Enhancement of multi-class structural defect recognition using generative adversarial network", Sustainability, Vol 13, No. 22, 12682.

10.3390/su132212682
27

Simonyan, K., Zisserman, A. (2015), "Very deep convolutional networks for large-scale image recognition", ArXiv, Vol. 1409, 1556.

10.48550/arXiv.1409.1556
28

Spencer Jr, B.F., Hoskere, V., Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, Vol. 5, No. 2, pp. 199-222.

10.1016/j.eng.2018.11.030
29

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 1-9.

10.1109/CVPR.2015.7298594
30

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016), "Rethinking the inception architecture for computer vision", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp. 2818-2826.

10.1109/CVPR.2016.308
31

Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L. (2020), "SOLO: segmenting objects by locations", Proceedings of the Computer Vision - ECCV 2020: Part XVIII 16, Glasgow, UK, pp. 649-665.

10.1007/978-3-030-58523-5_38
32

Wei, F., Yao, G., Yang, Y., Sun, Y. (2019), "Instance-level recognition and quantification for concrete surface bughole based on deep learning", Automation in Construction, Vol 107, 102920.

10.1016/j.autcon.2019.102920
33

Xue, Y., Li, Y. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Computer-Aided Civil and Infrastructure Engineering, Vol. 33, No. 8, pp. 638-654.

10.1111/mice.12367
34

Yu, Y., Samali, B., Rashidi, M., Mohammadi, M., Nguyen, T.N., Zhang, G. (2022), "Vision-based concrete crack detection using a hybrid framework considering noise effect", Journal of Building Engineering, Vol. 61, 105246.

10.1016/j.jobe.2022.105246
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 26
  • No :6
  • Pages :777-792
  • Received Date : 2024-11-01
  • Revised Date : 2024-11-20
  • Accepted Date : 2024-11-20