All Issue

2022 Vol.24, Issue 3 Preview Page

Research Paper

31 May 2022. pp. 247-262
Abstract
References
1
Bertozz, M., Broggi, A., Fascioli, A. (1998), “Stereo inverse perspective mapping: theory and applications”, Image and Vision Computing, Vol. 16, No. 8, pp. 585-590. 10.1016/S0262-8856(97)00093-0
2
Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart, R. (2017), “A closer look: small object detection in faster R-CNN”, Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 421-426. 10.1109/ICME.2017.8019550
3
Galeano, D.B., Devy, M., Boizard, J.L., Filali, W. (2011), “Real-time architecture on FPGA for obstacle detection using inverse perspective mapping”, Proceedings of the 2011 18th IEEE International Conference on Electronics, Circuits, and Systems, Beirut, pp. 788-791. 10.1109/ICECS.2011.6122392
4
Gyeonggi Province (2022), Road tunnel information status (open standard).
5
He, K., Zhang, X., Ren, S., Sun, J. (2016), “Deep residual learning for image recognition”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 770-778. 10.1109/CVPR.2016.90
6
Juliani, A., Berges, V.P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018), “Unity: A general platform for intelligent agents”, arXiv preprint, arXiv:1809.02627.
7
LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L. (1990), “Handwritten digit recognition with a back-propagation network”, Advances in Neural Information Processing Systems, pp. 396-404.
8
LeCun, Y., Yoshua, B., Hinton, G. (2015), “Deep learning”, Nature, Vol. 521, pp. 436-444. 10.1038/nature1453926017442
9
Lee, E.S., Choi, W., Kum, D. (2019), “Bird’s eye view localization of surrounding vehicles: longitudinal and lateral distance estimation with partial appearance”, Robotics and Autonomous Systems, Vol. 112, pp. 178-189. 10.1016/j.robot.2018.11.008
10
Lee, H.S., Jeong, S.H., Lee, J.W. (2011), “Real-time lane violation detection system using feature tracking”, The KIPS Transactions: Part B, Vol. 18, No. 4, pp. 201-212. 10.3745/KIPSTB.2011.18B.4.201
11
Mallot, H.A., Bülthoff, H.H., Little, J.J., Bohrer, S. (1991), “Inverse perspective mapping simplifies optical flow computation and obstacle detection”, Biological Cybernetics, Vol. 64, No. 3, pp. 177-185. 10.1007/BF002019782004128
12
Min, Z., Ying, M., Dihua, S. (2019), “Tunnel pedestrian detection based on super resolution and convolutional neural network”, Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, pp. 4635-4640. 10.1109/CCDC.2019.8833181
13
MOLIT (2010), ITS project implementation guidelines, Ministry of Land, Infrastructure and Transport.
14
MOLIT (2021), Guideline of installation and management of disaster prevention facilities on road tunnels, Ministry of Land, Infrastructure and Transport.
15
Padilla, R., Passos, W.L., Dias, T.L., Netto, S.L., da Silva, E.A. (2021), “A comparative analysis of object detection metrics with a companion open-source toolkit”, Electronics, Vol. 10, No. 3, 279. 10.3390/electronics10030279
16
Pflugfelder, R., Bischof, H., Dominguez, G.F., Nolle, M., Schwabach, H. (2005), “Influence of camera properties on image analysis in visual tunnel surveillance”, Proceedings of the 2005 IEEE Intelligent Transportation Systems, Vienna, pp. 868-873. 10.1109/ITSC.2005.1520164
17
Ren, S., He, K., Girshick, R., Sun, J. (2015), “Faster R-CNN: Towards real-time object detection with region proposal networks”, Advances in Neural Information Processing Systems, Montréal.
18
Shin, H.S., Kim, D.G., Yim, M.J., Lee, K.B., Oh, Y.S. (2017a), “A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm”, Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 1, pp. 95-107. 10.9711/KTAJ.2017.19.1.095
19
Shin, H.S., Lee, K.B., Yim, M.J., Kim, D.G. (2017b), “Development of a deep-learning based tunnel incident detection system on CCTVs”, Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 6, pp. 915-936. 10.9711/KTAJ.2017.19.1.095
20
Tong, K., Wu, Y., Zhou, F. (2020), “Recent advances in small object detection based on deep learning: a review”, Image and Vision Computing, Vol. 97, 103910. 10.1016/j.imavis.2020.103910
21
Tsai, C.M., Hsieh, J.W., Shih, F.Y. (2016), “Motion-based vehicle detection in Hsuehshan Tunnel”, Proceedings of the 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, pp. 385-389. 10.1109/ICACI.2016.7449856
22
Zhu, M. (2004), Recall, precision and average precision, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo.
23
Zou, Z., Shi, Z., Guo, Y., Ye, J. (2019), “Object detection in 20 years: a survey”, arXiv preprint, arXiv:1905.05055.
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 24
  • No :3
  • Pages :247-262
  • Received Date :2022. 03. 10
  • Revised Date :2022. 05. 12
  • Accepted Date : 2022. 05. 18