All Issue

2024 Vol.26, Issue 4 Preview Page

Research Paper

31 July 2024. pp. 365-384
Abstract
References
1

Abdullah-Al-Mamun, M., Tyagi, V., Zhao, H. (2021), "A new full-reference image quality metric for motion blur profile characterization", IEEE Access, Vol. 9, pp. 156361-156371.

10.1109/ACCESS.2021.3130177
2

Allaix, D.L., Vliet, A.B. (2023), "Existing standardization on monitoring, safety assessment and maintenance of bridges and tunnels", ce/papers, Vol. 6, No. 5, pp. 498-504.

10.1002/cepa.2026
3

Artmann, U. (2013), "Image quality evaluation using moving targets", Proc. SPIE 8667, Multimedia Content and Mobile Devices, 86671D.

10.1117/12.2003027
4

Bae, H., Jang, K., An, Y.K. (2021), "Deep super resolution crack network (SrcNet) for improving computer vision-based automated crack detectability in in situ bridges", Structural Health Monitoring, Vol. 20, No. 4, pp. 1428-1442.

10.1177/1475921720917227
5

Chan, F.H.Y., Lam, F.K., Zhu, H. (1998), "Adaptive thresholding by variational method", IEEE Transactions on Image Processing, Vol. 7, No. 3, pp. 468-473.

10.1109/83.66119618276266
6

Choi, S., Jun, H., Shin, S., Chung, W. (2021), "Evaluating accuracy of algorithms providing subsurface properties using full-reference image quality assessment", Geophysics and Geophysical Exploration, Vol. 24, No. 1, pp. 6-19.

10.7582/GGE.2021.24.1.006
7

De, K., Masilamani, V. (2013), "Image sharpness measure for blurred images in frequency domain", Procedia Engineering, Vol. 64, pp. 149-158.

10.1016/j.proeng.2013.09.086
8

Dinh, H., Wang, Q., Tu, F., Frymire, B., Mu, B. (2023), "Evaluation of motion blur image quality in video frame interpolation", Electronic Imaging, Vol. 35, pp. 262-1 - 262-5.

10.2352/EI.2023.35.8.IQSP-262
9

Dost, S., Saud, F., Shabbir, M., Khan, M.G., Shahid, M., Lovstrom, B. (2022), "Reduced reference image and video quality assessments: review of methods", EURASIP Journal on Image and Video Processing, Vol. 2022, No. 1, pp. 1-31.

10.1186/s13640-021-00578-y
10

Dugonik, B., Dugonik, A., Marovt, M., Golob, M. (2020), "Image quality assessment of digital image capturing devices for melanoma detection", Applied Sciences, Vol. 10, No. 8, 2876.

10.3390/app10082876
11

Ferwerda, J.A. (2003), "Three varieties of realism in computer graphics", Proceedings of the SPIE: Human Vision and Electronic Imaging VIII, No. 5007, pp. 290-297.

10.1117/12.473899
12

Galoogahi, H.K., Fagg, A., Huang, C., Ramanan, D., Lucey, S. (2017), "Need for speed: a benchmark for higher frame rate object tracking", Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 1125-1134.

10.1109/ICCV.2017.128
13

Huang, H.W., Li, Q.T., Zhang, D.M. (2018), "Deep learning based image recognition for crack and leakage defects of metro shield tunnel", Tunnelling and Underground Space Technology, Vol. 77, pp. 166-176.

10.1016/j.tust.2018.04.002
14

Huang, Z., Zhang, C.L., Fu, H.L., Ma, S.K., Fan, X.D. (2021), "Machine inspection equipment for tunnels: a review", Journal of Highway and Transportation Research and Development, Vol. 15, No. 2, pp. 40-53.

10.1061/JHTRCQ.0000774
16

Imatest MTF, https://www.imatest.com/docs/MTF_appearance/ (March 10, 2024).

17

Imatest, https://www.imatest.com/ (March 10, 2024).

19

Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J. (2018), "Super SloMo: high quality estimation of multiple intermediate frames for video interpolation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 9000-9008.

10.1109/CVPR.2018.00938
20

Kamble, V., Bhurchandi, K.M. (2015), "No-reference image quality assessment algorithms: a survey", Optik, Vol. 126, No. 11-12, pp. 1090-1097.

10.1016/j.ijleo.2015.02.093
21

Kamdi, S., Krishna, R.K. (2012), "Image segmentation and region growing algorithm", International Journal of Computer Technology and Electronics Engineering, Vol. 2, No. 1, pp. 103-107.

22

Kawahara, S., Doi, H., Shirato, M., Kajifusa, N., Kutsukake, T. (2014), "Investigation of the tunnel ceiling collapse in the central expressway in Japan", Proceedings of the TRB 93rd Annual Meeting, Washington, D.C., USA, TRB Paper Manuscript #14-2559.

23

Koren, N. (2006), "The Imatest program: comparing cameras with different amounts of sharpening", Proc. SPIE 6069, Digital Photography II, Vol. 60690, pp. 195-203.

10.1117/12.650848
24

Krizhevsky, A., Sutskever, I., Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of the Advances in Neural Information Processing Systems, Nevada, USA, No. 25, pp. 1097-1105.

25

Li, D., Xie, Q., Gong, X., Yu, Z., Xu, J., Sun, Y., Wang, J. (2021), "Automatic defect detection of metro tunnel surfaces using a vision-based inspection system", Advanced Engineering Informatics, Vol. 47, 101206.

10.1016/j.aei.2020.101206
26

Liu, Y., Yeoh, J.K.W., Chua, D.K.H. (2020), "Deep learning-based enhancement of motion blurred UAV concrete crack images", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020028.

10.1061/(ASCE)CP.1943-5487.0000907
27

Masaoka, K. (2018), "Accuracy and precision of edge-based modulation transfer function measurement for sampled imaging systems", IEEE Access, Vol. 6, pp. 41079-41086.

10.1109/ACCESS.2018.2856742
28

Montero, R., Victores, J.G., Martínez, S., Jardón, A., Balaguer, C. (2015), "Past, present and future of robotic tunnel inspection", Automation in Construction, Vol. 59, pp. 99-112.

10.1016/j.autcon.2015.02.003
29

Moorthy, A.K., Bovik, A.C. (2011), "Blind image quality assessment: from natural scene statistics to perceptual quality", IEEE Transactions on Image Processing, Vol. 20, No. 12, pp. 3350-3364.

10.1109/TIP.2011.214732521521667
30

Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Lee, K.M. (2019), "NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study", Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, pp. 1996-2005.

10.1109/CVPRW.2019.00251
31

Nah, S., Kim, T.H., Lee, K.M. (2017), "Deep multi-scale convolutional neural network for dynamic scene deblurring", Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 257-265.

10.1109/CVPR.2017.35
32

Ni, F., Zhang, J., Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Computer-Aided Civil and Infrastructure Engineering, Vol. 35, No. 7, pp. 685-700.

10.1111/mice.12528
33

NTSB (2007), Ceiling collapse in the interstate 90 connector tunnel, National Transportation Safety Board, NTSB/HAR-07/02, pp. 1-13.

34

Pambrun, J.F., Noumeir, R. (2015), "Limitations of the SSIM quality metric in the context of diagnostic imaging", Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, pp. 2960-2963.

10.1109/ICIP.2015.7351345
35

Paramanand, C., Rajagopalan, A.N. (2014), "Shape from sharp and motion-blurred image pair", International Journal of Computer Vision, Vol. 107, pp. 272-292.

10.1007/s11263-013-0685-1
36

Rim, J., Lee, H., Won, J., Cho, S. (2020), "Real-world blur dataset for learning and benchmarking deblurring algorithms", Computer Vision - ECCV 2020, pp. 184-201.

10.1007/978-3-030-58595-2_12
37

Salomon, D., Motta, G. (2010), Handbook of Data Compression, Springer, New York, pp. 443-730.

10.1007/978-1-84882-903-9_7
38

Sankarasrinivasan, S., Balasubramanian, E., Karthik, K., Chandrasekar, U., Gupta, R. (2015), "Health monitoring of civil structures with integrated UAV and image processing system", Procedia Computer Science, No. 54, pp. 508-515.

10.1016/j.procs.2015.06.058
39

Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., Shao, L. (2019), "Human-aware motion deblurring", Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, pp. 5571-5580.

10.1109/ICCV.2019.00567
40

Simonyan, K., Zisserman, A. (2015), "Very deep convolutional networks for large-scale image recognition", arXiv, Vol. 1409, 1556.

41

Song, Q., Wu, Y., Xin, X., Yang, L., Yang, M., Chen, H., Liu, C., Hu, M., Chai, X., Li, J. (2019), "Real-time tunnel crack analysis system via deep learning", IEEE Access, Vol. 7, pp. 64186-64197.

10.1109/ACCESS.2019.2916330
42

Sorel, M., Flusser, J. (2008), "Space-variant restoration of images degraded by camera motion blur", IEEE Transactions on Image Processing, Vol. 17, No. 2, pp. 105-116.

10.1109/TIP.2007.91292818270103
43

Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O. (2017), "Deep video deblurring for hand-held cameras", Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, pp. 237-246.

10.1109/CVPR.2017.33
44

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015), "Going deeper with convolutions", Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1-9.

10.1109/CVPR.2015.7298594
45

Telleen, J., Sullivan, A., Yee, J., Wang, O., Gunawardane, P., Collins, I., Davis, J. (2007), "Synthetic shutter speed imaging", Computer Graphics Forum, Vol. 26, No. 3, pp. 591-598.

10.1111/j.1467-8659.2007.01082.x
46

Ukai, M. (2007), "Advanced inspection system of tunnel wall deformation using image processing", Quarterly Report of RTRI, No. 48, No. 2, pp. 94-98.

10.2219/rtriqr.48.94
47

Wang, H., Wang, Q., Zhai, J., Yuan, D., Zhang, W., Xie, X., Zhou, B., Cai, J., Lei, Y., (2022), "Design of fast acquisition system and analysis of geometric feature for highway tunnel lining cracks based on machine vision", Applied Sciences, Vol. 12, No. 5, 2516.

10.3390/app12052516
48

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004), "Image quality assessment: from error visibility to structural similarity", IEEE Transactions on Image Processing, Vol. 13, No. 4, pp. 600-612.

10.1109/TIP.2003.81986115376593
49

Xiang, C., Wang, W., Deng, L., Shi, P., Kong, X. (2022), "Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network", Automation in Construction, Vol. 140, 104346.

10.1016/j.autcon.2022.104346
50

Xue, Y., Li, Y. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Computer-Aided Civil and Infrastructure Engineering, Vol. 33, No. 8, pp. 638-654.

10.1111/mice.12367
51

Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H., Liao, Q. (2019), "Deep learning for single image super-resolution: a brief review", IEEE Transactions on Multimedia, Vol. 21, No. 12, pp. 3106-3121.

10.1109/TMM.2019.2919431
52

Yasuda, T., Yamamoto, H., Shigeta, Y. (2016), "Tunnel inspection system by using high-speed mobile 3D survey vehicle: MIMM-R", Journal of Robotics Society of Japan, Vol. 34, No. 9, pp. 589-590.

10.7210/jrsj.34.589
53

Ye, X.W., Jin, T., Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Structures and Systems, Vol. 24, No. 5, pp. 567-585.

10.12989/sss.2019.24.5.567
54

Yu, Y., Samali, B., Rashidi, M., Mohammadi, M., Nguyen, T.N., Zhang, G. (2022), "Vision-based concrete crack detection using a hybrid framework considering noise effect", Journal of Building Engineering, Vol. 61, 105246.

10.1016/j.jobe.2022.105246
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 26
  • No :4
  • Pages :365-384
  • Received Date : 2024-06-26
  • Revised Date : 2024-07-12
  • Accepted Date : 2024-07-12