Research Paper

Journal of Korean Tunnelling and Underground Space Association. 30 November 2021. 485-502
https://doi.org/10.9711/KTAJ.2021.23.6.485

ABSTRACT


MAIN

  • 1. 서 론

  • 2. 터널굴착에 따른 지반거동 및 손상도 평가방법

  •   2.1 터널굴착에 따른 지표침하 특성

  •   2.2 인접구조물 손상도 평가방법

  • 3. 터널 굴착에 따른 상부 구조물 안정성 분석

  •   3.1 해석 모델링

  •   3.2 매개변수 해석 결과분석

  • 4. 매개변수에 따른 상관성 분석

  •   4.1 최대침하량 상관성 분석

  •   4.2 각변위 상관성 분석

  • 5. 현장 적용성 분석

  •   5.1 현장조건 및 계측결과

  •   5.2 상관성 분석 결과를 이용한 역해석

  • 6. 결 론

1. 서 론

도심지의 상습적인 정체 해소와 운송수단 확대를 위한 인프라 건설에 따라 효율적인 개발이 어려운 지상공간 대신 토지 이용의 극대화가 가능한 지하공간 개발에 관심이 집중되고 있다. 하지만 이러한 지하공간 개발은 대규모 지반굴착을 수반하게 되며 이에 따라 지표침하와 인접 구조물 변상 등과 같은 지상공간에 영향을 미친다. 지하공간 대규모 굴착에 따른 지표침하 및 인접 구조물 변상은 토피고, 지층조건, 구조물 위치 및 형상, 지하수 저하 등의 다양하고 많은 변수가 복합적으로 작용하게 된다. 따라서 지하공간 특히, 터널 시공시 발생되는 지표침하 및 인접 구조물 변상의 사전예측은 많은 어려움이 존재한다.

지하굴착에 따른 지표침하 및 인접 구조물 변상의 사전예측에 관한 연구는 국내·외 많은 연구자들에 의해 수행되어 왔다. Rankin (1988)은 부등침하와 최대침하가 구조물에 미치는 영향에 대한 연구를 수행하였고, Polshin and Tokar (1957)Burland and Wroth (1974)은 구조물에 크랙이 발생할 때의 한계 인장변형률에 대한 연구를 수행하였으며, Skempton and MacDonald (1956)Bjerrum (1963)은 자중에 의해 침하된 구조물에 최초 크랙 및 심각한 크랙과 같은 구조물의 손상 등이 발생할 때의 인장변형율에 대한 연구를 수행하였다. 또한, Boscardin and Cording (1989)Son and Cording (2005)은 각변형률과 수평변형률을 이용한 손상도 평가기준을 제시하였고, Burland (1995)는 처짐비와 수평변형률을 이용한 손상도 평가기준을 제시하였으며, Boone et al. (1999) 종방향 인장변형률과 주인장변형률을 이용하여 구조물의 손상도를 예측 및 평가할 수 있는 손상도 평가기준을 제시하였다. 국내 연구자들은 수치해석과 모형실험을 수행하고 Boscardin and Cording (1989), Burland (1995), Son and Cording (2005) 등의 구조물 손상 평가도표를 이용하여 지반굴착에 따른 구조물 안정성 영향에 대한 연구들을 수행하였다(Hwang and Kim, 2007; Kim and Kim, 2008; Son and Yun, 2009; Son and Park, 2012; Jeon et al., 2013; Han et al., 2021).

현재 국내 도심지 지하 구조물 건설에 대한 설계시 지반침하 및 인접한 구조물 영향에 대한 평가를 수행할 경우, 수치해석을 통한 안정성 평가와 구조물의 각변위와 수평변형률로 대표되는 평가도표를 이용한 구조물 손상평가를 수행중이나 지표침하와 구조물 건전도 저감에 영향을 미치는 다양한 영향 인자들의 영향에 대한 연구는 찾아보기 어렵다.

따라서 본 연구에서는 터널 굴착으로 인해 필연적으로 발생되는 지반침하 및 상부 구조물 영향 평가를 수행하기 위해 지표침하와 구조물 건전도 저감의 주요 영향 인자들을 설정하고 다양한 지표침하 유발 인자를 이용한 Parameter Study를 통하여 지반 및 구조물 상호거동 양상을 분석하였다. 또한, 각각의 주요 영향 인자들에 대한 상관성 분석을 수행하고, 현장 적용성을 분석하였다. 이를 통해 궁극적으로 구조물 손상평가기법을 분석하여 터널의 적절한 단면 결정을 위한 기초 자료로 활용될 수 있도록 하고자 하였다.

2. 터널굴착에 따른 지반거동 및 손상도 평가방법

2.1 터널굴착에 따른 지표침하 특성

터널굴착과 관련된 침하예측에 적용되는 일반적인 방법은 Peck (1969)이 제안한 다양한 지반조건에서 시공된 터널 계측자료 분석을 통해 침하곡선 형상이 Fig. 1과 같이 가우스 정규확률 분포곡선을 따른다는 전제하에 지표침하 곡선식을 이용한 경험적 방법이 주로 사용되어 졌다.

(1)
s=smaxexp-y22i2
(2)
Vs=-smaxexp-y22i2dy=2piismax2.5ismax

smax : 최대침하량, i : 터널중심선에서 변곡점(inflection Point)까지 거리

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F1.jpg
Fig. 1.

Ground settlement curve (Gaussian normal distribution)

침하예측을 위한 에러함수 이용시 침하곡선 중심점은 최대침하량(smax)이고, Fig. 2에서 터널반경(R) 및 깊이(z)와 지방상태를 알면 변곡점의 위치(i)를 결정할 수 있으며, 지표침하 곡선의 체적은 일반적으로 터널 굴착 단면적(A)과 지반손실률(Vl)의 관계로 표현된다. 터널의 형상이 원형일 경우 식 (3)과 같이 나타낼 수 있으며, 최대침하량은 식 (2)식 (3)을 조합하여 식 (4)와 같이 산정할 수 있다.

(3)
Vs=VlπD24
(4)
smax=0.31VlD2i

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F2.jpg
Fig. 2.

Inflection point location ( I)

2.2 인접구조물 손상도 평가방법

초창기 터널 굴착에 의한 인접 구조물의 손상평가는 주로 건물의 자중에 의한 침하로 인해서 발생되는 건물의 손상 허용한계에 관한 연구에서 비롯되었다. Sower (1962)는 사례분석을 통해 Table 1과 같이 구조물 종류별 허용 침하량을 제안하였고, Bjerrum (1963)Fig. 3과 같이 구조물 종류에 따른 구조물 손상 정도를 각변위 한계로 제안하였다.

Table 1.

Allowable settlement (Sower, 1962)

Type of movement Structure type Maximum settlement (cm)
Total settlement Drainage 15~30
Access 30~60
Masonry walled structure 2.5~5
Framed structure 5~10
Smokestacks, Silos, Mats 7.5~30
Overturing Smokestacks, Towers 0.004S
Stacking of goods 0.01S
Crane rail 0.003S
Unequal settlement High continuous brick walls 0.0005~0.002S
Reinforced-concrete building curtain walls 0.003S
Steel frame, Continuous 0.002S
Simple steel frame 0.005S

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F3.jpg
Fig. 3.

Limits related to angular displacements (Bjerrum, 1963)

또한, Skempton (1955)Table 2와 같이 기초형식, 지반조건을 고려하여 구조물의 각변위와 최대 침하량을 제안하였고 Rankin (1988)Table 3과 같이 구조물 손상 위험 정도를 등급화하여 최대 경사 및 침하량에 근간한 손상도 기준을 제안하였다.

Table 2.

Damage limit of structure (Skempton, 1955)

Condition Individual footing Mat foundation
Angular displacement (δ/L) 1/300
Maximum unequal settlement Cohesive soil 44 mm (38 mm)
Sandy soil 32 mm (25 mm)
Maximum settlement Cohesive soil 76 mm (64 mm) 76~127 mm (64 mm)
Sandy soil 51 mm 51~76 mm (38~64 mm)

( )This is the recommended maximum.

Table 3.

Description of risk (Rankin, 1988)

Risk
category
Maximum slope
of building
Maximum settlement
of building (cm)
Description of risk
1 <1/500 <10 Negligible : superficial damage unlikely
2 1/500~1/200 10~50 Slight : possible superficial damage which is unlikely to have structural significance
3 1/200~1/50 50~75 Moderate : expected superficial damage and possible structural damage to buildings,
possible damage to relatively rigid pipelines
4 >1/50 >75 High : expected structural damage to buildings. Expected damage to rigid pipelines,
possible damage to other pipelines

하지만, Sower (1962), Bjerrum (1963), Skempton (1955), Rankin (1988) 등은 연직방향의 침하와 부등침하를 고려한 구조물 손상예측 기준들로서, 지반굴착에 의한 지반변위는 연직변위 및 수평변위가 발생함에 따라 자중에 의한 연직변위만을 적용한 손상정도를 예측하는 것은 구조물 손상여부를 과소 예측할 수 있는 문제가 있다. 따라서 지반굴착에 의한 지반의 연직변위와 수평변위를 동시에 고려하는 합리적인 예측기준들이 제시되었고 대표적으로 Boscardin and Cording (1989), Burland (1995), Boone et al. (1999), Son and Cording (2005)과 같은 구조물 손상도 평가기준이 이에 속한다.

Boscardin and Cording (1989)은 손상도 기준 정립을 위해 Fig. 4와 같이 각변위(S), 수평변형률(εL), 기율기(tilt) 개념을 도입하여 Fig. 5와 같은 평가도표를 사용하여 손상도를 평가할 수 있는 평가기준을 제시하였다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F4.jpg
Fig. 4.

Displacement concept (Boscardin and Cording, 1989)

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F5.jpg
Fig. 5.

Strain damage estimation criterion (Boscardin and Cording, 1989)

Burland (1995)Fig. 6과 같이 처짐비(deflection ratio, /L)와 수평변형률(horizontal strain, εh)을 적용한 손상도 평가기준을 제시하였으며, Boone et al. (1999)Fig. 7과 같이 종방향 인장변형률(εt)과 주인장변형률(εp)에 의해 계산된 누적 균열의 크기로 손상도 평가기준을 제시하였다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F6.jpg
Fig. 6.

Strain damage estimation criterion (Burland, 1995)

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F7.jpg
Fig. 7.

Strain damage estimation criterion (Boone et al., 1999)

Boscardin and Cording (1989)Burland (1995)는 구조물을 묘사하기 위해 단순지지 되고 집중하중을 받는 Beam 모델을 적용하였으며, 가정된 Beam 탄성계수의 비(E/G)는 2.6, 깊이와 높이 비(L/H)는 1로 가정하였다. 이와 같이 단순화된 가정들을 가지고 다양한 조건의 구조물의 손상도 예측을 하기에는 여러 가지 문제점이 발생될 수 있으며 Burland (1995)는 강체 회전요소인 tilt영향을 반영하지 못하는 문제와. Boone et al. (1999)은 하나의 큰 균열은 구조물의 심각한 문제가 발생할 수 있는 문제점이 있을 수 있다.

따라서 이와 같은 문제점을 해결하고 다양한 구조물에 제약사항이 없이 적용될 수 있도록 현장관찰과 변형률 상태이론(The State of Strain Theory)에 근거해 Boscardin and Cording (1989) 기준을 수정 업데이트한 인접구조물 손상도 평가기준이 Son and Cording (2005)에 의해 제시되었다(Fig. 8 참조).

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F8.jpg
Fig. 8.

Strain damage estimation criterion (Son and Cording, 2005)

3. 터널 굴착에 따른 상부 구조물 안정성 분석

3.1 해석 모델링

본 연구에서는 토피고(터널심도), 터널형상, 지층조건, 지보방법, 구조물 높이, 구조물 폭, 구조물 위치(터널 중심선으로부터 이격)와 같은 총 7가지의 지반침하 영향요소를 매개변수로 하여 범용 지반 유한해석 해석프로그램인 Midas GTS NX를 사용하여 Mohr-Coulomb 파괴기준에 따른 탄소성 해석을 수행하였다. 매개변수 중 토피고는 천층부터 대심도까지 고려할 수 있도록 10~40 m로 설정하였고 터널형상은 도심지에 건설되는 도시철도 터널 중 단선터널, 복선터널, 확폭터널을 설정하였으며, 지층조건은 도심지에 건설되는 도시철도 터널 조건을 대표할 수 있는 토사층, 풍화암, Ⅴ등급, Ⅳ등급, Ⅲ등급 총 5개 지층 조건으로 단순화하여 적용하였다. 상부 구조물 높이는 5층 건물부터 25층 건물 규모까지를 고려하여 12.5~70 m로 고려하였고 구조물 폭은 10~40 m, 구조물 위치는 터널중심선으로부터 0~40 m로 설정하였다(Table 4 참조). 매개변수 중 상부 구조물 설정시 구조물 손상 정도는 지하층과 기초가 없는 조건에서 안전측 설계를 유도할 수 있기때문에 지하층과 기초조건이 없는 지상 구조물만을 고려하였다. 경계조건은 Fig. 9와 같이 영향범위를 고려하여 측면은 터널 굴착영역의 4배 이상, 하부경계는 터널 주변으로부터 터널 높이의 4배 이상으로 설정하여 지반경계가 해석결과에 영향을 미치지 않도록 고려하였다. 또한, 해석에 사용된 지반 물성치는 Table 5에 나타낸 바와 같다.

Table 4.

Condition for the parametric numerical analyses

Condition Case
Tunnel depth 10.0~40.0 m
Tunnel shape 7.5~19.5 m
Ground condition Ⅲ, Ⅳ, Ⅴ, Weathered rock, Soil
Tunnel supports Normal, Umbrella arch method (small, large)
Structure height 12.5~70.0 m
Structure shape 10.0~40.0 m
Structure location 0.0~40.0 m

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F9.jpg
Fig. 9.

Tunnel analysis boundary and modeling

Table 5.

Material properties used for analysis

Rock mass class Unit weight, γt
(kN/m3)
Elastic modulus
(MPa)
Cohesion, C
(kPa)
Friction angle, φ
(°)
Poisson ratio
(ν)
25 5,000 1,200 38 0.25
24 2,000 500 34 0.27
23 800 100 30 0.29
Weathered rock 21 250 40 32 0.32
Soil 19 30 20 30 0.32

3.2 매개변수 해석 결과분석

3.2.1 상부 구조물 안정성 해석 결과분석

각각의 매개변수에 따라 터널 굴착에 따른 구조물 안정성 해석을 수행하였고 그 결과 토피고(터널심도)가 낮고 지반조건이 연약할수록 구조물 침하와 각변위가 매우 크게 나타났다. 또한, 터널 폭이 크고, 지보량이 작을수록 구조물 침하와 각변위가가 많이 발생하며, 구조물 규모가 크고 구조물 위치(터널 연직방향기준)가 터널에 근접할수록 구조물 침하와 각변위가가 많이 발생하는 것으로 나타났다. 구조물 폭의 경우 천단침하량은 구조물 폭이 클수록 하중이 많이 발생하여 크게 나타나지만, 각변위의 경우 구조물 폭 40 m의 경우보다 30 m 경우가 각변위 값이 큰 것으로 나타났다. Table 6Table 7, Fig. 10은 해석 Case 중 5등급 암반에 토피고 20 m, 지보방법은 숏크리트와 록볼트, 터널 폭 12 m, 구조물 높이 40 m, 구조물 폭 30 m에 대하여 최대침하량과 각변위 결과를 나타낸 것이다.

Table 6.

Results of the angular distortion according to structure location

Location (m)
Rock mass class
0 m 10 m 20 m 30 m 40 m
0.92 0.58 0.23 0.06 0.004
2.19 1.38 0.54 0.16 0.03
5.73 3.61 1.49 0.53 0.20
Weathered rock 18.40 10.88 4.38 1.65 0.79
Soil 167.68 91.44 31.76 10.58 5.44

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F10.jpg
Fig. 10.

Results of the vertical displacement

Table 7.

Results of the maximum settlement according to structure location

Location (m)
Rock mass class
0 m 10 m 20 m 30 m 40 m
2.1E-05 1.7E-05 7.4E-06 1.7E-06 1.7E-08
4.9E-05 4.0E-05 1.7E-05 5.0E-06 3.6E-07
1.2E-04 9.8E-05 4.2E-05 1.3E-05 1.6E-06
Weathered rock 3.8E-04 2.9E-04 1.1E-04 3.0E-05 1.7E-06
Soil 3.8E-03 2.5E-03 8.0E-04 1.7E-04 2.1E-05

3.2.2 Boscardin and Cording 도표를 이용한 해석 결과분석

각각의 매개변수에 따른 해석 결과를 Boscardin and Cording 구조물 손상도표를 통해 평가하면 Fig. 11과 같이 나타난다. 구조물 안정성 평가 결과 각변위의 경우 매개변수에 따라 편차가 크게 발생하는 것으로 나타났으나, 수평변형률의 경우 매개변수에 따른 편차가 거의 없는 것으로 나타났다. 따라서 터널 굴착의 경우 수평변형률보다는 각변위가 구조물 안정성에 미치는 영향이 큰 것을 알 수 있다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F11.jpg
Fig. 11.

Results of the damage assessment (Boscardin and Cording method)

3.2.3 최대침하량과 각변위를 이용한 해석 결과분석

각각의 매개변수에 따른 해석 결과를 터널 굴착에 따른 구조물 안정성의 주요 인자인 각변위와 최대침하량으로 Fig. 12와 같이 나타내었다. 그 결과 각변위의 경우 구조물 손상 단계 중 무시에 해당하지만, 구조물 최대침하량 기준인 25 mm보다 큰 경우가 발생하는 것을 알 수 있다. 따라서 단순히 각변위와 수평변형률로 대표되는 구조물 손상도표를 이용한 구조물 안정성 평가시 추가적으로 최대침하량 역시 반드시 평가되어야 할 것으로 판단된다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F12.jpg
Fig. 12.

Results of the parametric analyses (angular distortion vs. maximum settlement)

4. 매개변수에 따른 상관성 분석

4.1 최대침하량 상관성 분석

각각의 매개변수에 따라서 최대침하량의 상관성을 분석하였다. 그 결과 Fig. 13과 같이 각각 매개변수 결과의 최대값으로 최대침하량을 나누어 정규화하였고, 그에 따라 그림과 같은 비율을 갖는 것으로 나타났다. 지보방법의 경우 1은 일반 숏크리트와 록볼트 보강, 2는 소구경 강관보강, 3은 대구경 강관보강으로 설정하였다. 대부분 결과에서 지반조건과 상관없이 유사한 경우를 보이나 토피고와 지보방법의 경우에서는 지반조건에 따라 차이가 발생하는 것으로 나타났다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F13.jpg
Fig. 13.

Ratio of the maximum settlement results

4.2 각변위 상관성 분석

4.1절과 마찬가지 방법으로 각각의 매개변수에 따라서 각변위의 상관성을 분석하였다. 그 결과 Fig. 14와 같이 각각 매개변수 결과의 최대값으로 각변위를 나누어 정규화하였고, 그에 따라 그림과 같은 비율을 갖는 것으로 나타났다. 비율은 대부분 최대침하량 상관성분석과 유사한 결과를 보이지만, 구조물 폭의 경우 40 m보다 30 m의 경우가 더 큰 것으로 나타났다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F14.jpg
Fig. 14.

Ratio of the angular distortion results

5. 현장 적용성 분석

5.1 현장조건 및 계측결과

적용 현장은 경기도 화성시에 위치한 OOO터널로 해당 구간은 매립토, 퇴적층이 깊은 심도로 분포하고 터널 굴착시 상부 도로 및 구조물 침하가 억제를 위해 미니 파이프루프 공법을 사용하였다. 지반침하가 발생된 지점은 Fig. 15(a)와 같이 상부구조물은 5 m × 22 m의 2층건물이고 터널이 풍화토에 위치하고 계측결과 지하수 유출 완료 후 시행되어 지하수유출에 의한 지표침하 연계성은 없는 것으로 나타났다. 또한, 계측결과 Fig. 15(b)와 같이터널 굴착에 따라 최대 67 mm의 지표침하가 발생하였다.

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F15.jpg
Fig. 15.

Condition of the tunnel site

5.2 상관성 분석 결과를 이용한 역해석

3.2.1절 Table 6에서 나타낸 결과 중 적용 현장과 가장 유사한 조건은 구조물 위치 0 m의 토사조건이고 이때 최대침하량은 167.68 mm이다. Fig. 16과 같이 상관성 분석 결과를 이용하여 해당현장의 최대침하량을 계산하면 다음 식 (5)와 같이 66.38 mm이다. 이는 식 (6)을 이용하여 계측결과 67 mm와 비교하였을 때 약 1%의 오차가 발생하는 것으로 나타났지만, 이는 제한된 해석결과 및 1개의 계측자료로부터 분석된 결과이므로 추가적인 계측자료와의 상관성 분석결과를 토대로 신뢰성 향상방안이 필요할 것으로 판단된다.

(5)
167.68×2.50×1.0×0.70×0.26×0.87×1.0=66.38mm
(6)
ErrorRatio(%)=Appromicronx.-exact.exact.×100

/media/sites/kta/2021-023-06/N0550230609/images/kta_23_06_09_F16.jpg
Fig. 16.

Ratio of the maximum settlement results chart

6. 결 론

본 연구에서는 터널 굴착으로 인해 필연적으로 발생되는 지반침하 및 상부 구조물 영향 평가를 수행하기 위해 지표침하와 구조물 건전도 저감의 주요 영향 인자들을 설정하고 다양한 지표침하 유발 인자를 이용한 수치해석적 Parameter Study를 통하여 지반 및 구조물 상호거동 양상을 분석하였다. 또한, 구조물 안정성 평가도표를 이용한 안정성 평가와 각각의 주요 영향 인자들에 대한 상관성 분석을 수행하였고 지반침하 현장에 적용하여 신뢰성을 분석하였다. 연구결과를 요약하면 다음과 같다.

1. 해석결과 일반적으로 토피고(터널심도)가 낮고 지반조건이 연약할수록, 터널 폭이 크고, 지보량이 작을수록, 구조물 규모가 크고 구조물 위치(터널 연직방향기준)가 터널에 근접할수록 구조물 침하와 각변위가 매우 큰 것으로 판단되었다. 하지만 구조물 폭의 경우 천단침하량은 구조물 폭이 클수록 하중이 많이 발생하여 크게 나타나지만, 각변위의 경우 구조물 폭 40 m의 경우보다 30 m 경우가 각변위 값이 큰 것으로 나타났고 이는 구조물 폭의 증가가 구조물 자중에 따른 지반침하량의 상승보다 크기 때문에 나타나는 현상으로 판단된다.

2. Boscardin and Cording 구조물 손상도표를 이용하여 구조물 안정성 평가를 수행한 결과 각변위의 경우 매개변수에 따라 편차가 크게 발생하는 것으로 나타났으나, 수평변형률의 경우 매개변수에 따른 편차가 거의 없는 것으로 나타나 터널 굴착의 경우 수평변형률보다는 각변위가 구조물 안정성에 미치는 영향이 큰 것으로 판단되었다.

3. 매개변수에 따른 해석 결과를 구조물 안정성의 주요 인자인 각변위와 최대침하량으로 나타낸 결과 각변위의 경우 구조물 손상 단계 중 무시에 해당하지만, 구조물 최대침하량 기준인 25 mm보다 큰 경우가 발생한 것으로 미루어 구조물 손상도표를 이용한 구조물 안정성 평가와 함께 최대침하량 역시 반드시 평가되어야 할 것으로 판단되었다.

4. 각각의 매개변수에 따라서 최대침하량과 각변위의 상관성을 분석하였고 그 결과를 침하가 발생한 현장에 적용하였다. 상관성 분석 결과를 이용한 최대침하량 산정 결과 66.38 mm로 나타났고 이는 현장계측결과 67 mm와 비교하였을 때 약 1%의 오차가 발생하는 것으로 나타났다. 하지만, 이는 제한된 해석결과 및 1개의 계측자료로부터 분석된 결과이므로 추가적인 계측자료와의 상관성 분석결과를 토대로 신뢰성 향상방안을 수립할 계획이다.

Acknowledgements

본 연구는 국토교통과학기술진흥원의 지원(과제명: 도심 지하 교통 인프라 건설 및 운영 기술 고도화 연구, 과제번호: 21UUTI-B157786-02)으로 수행되었으며, 이에 깊은 감사를 드립니다.

저자 기여도

나유성은 원고작성과 수치해석을 하였고, 박민수는 데이터 수집 및 데이터 분석을 하였고, 고성일은 연구개념과 설계를 하였고, 김창용은 연구방법 설정과 원고검토를 하였다.

References

1
Bjerrum, L. (1963), "Discussion on: Proceedings of the European Conference on Soil Mechanics and Foundation Engineering", Vol. 3, Norwegian Geotechnical Institute, Publ. No. 98, Oslo, Norway, pp. 1-3.
2
Boone, S.J., Westland, J., Nusink, R. (1999), "Comparative evaluation of building response to an adjacent braced excavation", Canadian Geotechnical Journal, Vol. 36, No. 2, pp. 210-223. 10.1139/t98-100
3
Boscardin, M.D., Cording, E.J. (1989), "Building response to excavation-induced settlement", Journal of Gerotechnical Engineering Division, Vol. 115, No. 1, pp. 1-21. 10.1061/(ASCE)0733-9410(1989)115:1(1)
4
Burland, J.B. (1995), "Assessment of risk of damage to building due to tunneling and excavation", Proceedings of the 1st international Conference on Earthquake Geotechnical Engineering, IS-Tokyo, Japan, pp. 495-546.
5
Burland, J.B., Wroth, C.P. (1974), " Settlement of buildings and associated damage", Proceedings of the Conference on Settlement of Structures, Cambridge, pp. 611-654.
6
Han, S.M., Lee, D.H., Park, D.H. (2021), "Stability evaluation of existing subway structure by adjacent excavation in urban tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 5, pp. 339-357.
7
Hwang, E.S., Kim, H.M. (2007), "Model tests for the behavior assessment of adjacent buildings in urban tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 9, No. 3, pp. 251-261.
8
Jeon, J.H., Park, J.D., Lim, Y.D., Lee, S.W. (2013), "Damage assessment of structures according to the excavation methods", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 2, pp. 161-173. 10.9711/KTAJ.2013.15.2.161
9
Kim, Y.G., Kim, D.H. (2008), "Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 1, pp. 1-15.
10
Peck, R.B. (1969), "Deep excavations and tunneling in soft ground", Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, pp. 225-290.
11
Polshin, D.E., Tokar, R.A. (1957), "Maximum allowable non-uniform settlement of structures", Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 1, pp. 402-405.
12
Rankin, W.J. (1988), "Ground movements resulting from urban tunnelling: predictions and effects, ln Engineering Geology of Underground Movements", Geological Society, London, pp. 79-92. 10.1144/GSL.ENG.1988.005.01.06
13
Skempton, A.W. (1955), "Foundations for high buildings", Proceedings of the Institution of Civil Engineers, Vol. 4, No. 4, pp. 246-269. 10.1680/ipeds.1955.11849
14
Skempton, A.W., MacDonald, D.H. (1956), "The allowable settlement of Buildings", Proceedings of the Institution of Civil Engineers, pp. 727-768. 10.1680/ipeds.1956.12202
15
Son, M., Cording, E.J. (2005), "Estimation of building damage due to excavation-induced ground movements", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 2, pp. 162-177. 10.1061/(ASCE)1090-0241(2005)131:2(162)
16
Son, M., Park, J. (2012), "Response analysis of frame structures with the consideration of tunnel construction", KSCE Journal of Civil and Environmental Engineering Research, Vol. 32, No. 3C, pp. 121-127.
17
Son, M.R., Yun, J.C. (2009), "Numerical analysis of tunnelling-induced ground movements", Journal of Korean Tunnelling and Underground Space Association, Vol. 11, No. 3, pp. 229-242.
18
Sower, G.F. (1962), "Shallow foundations", Chapter 6 in Foundation Engineering, ed. by G.A. Leonards, McGraw-hill, Inc., New York, pp. 525-641.
페이지 상단으로 이동하기