All Issue

2024 Vol.26, Issue 5 Preview Page

Research Paper

30 September 2024. pp. 519-532
Abstract
References
1

Agrawal, A.K., Murthy, V.M.S.R., Chattopadhyaya, S., Raina, A.K. (2022), "Prediction of TBM disc cutter wear and penetration rate in tunneling through hard and abrasive rock using multi-layer shallow neural network and response surface methods", Rock Mechanics and Rock Engineering, Vol. 55, No. 6, pp. 3489-3506.

10.1007/s00603-022-02834-7
2

Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunnelling and Underground Space Technology, Vol. 63, pp. 29-43.

10.1016/j.tust.2016.12.009
3

Bae, S., Ham, S., Lee, I., Lee, G.P., Kim, D. (2022), "Deep learning based crack detection from tunnel cement concrete lining", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 6, pp. 583-598.

10.9711/KTAJ.2022.24.6.583
4

Benardos, A.G., Kaliampakos, D.C. (2004), "Modelling TBM performance with artificial neural networks", Tunnelling and Underground Space Technology, Vol. 19, No. 6, pp. 597-605.

10.1016/j.tust.2004.02.128
5

Broere, W. (2016), "Urban underground space: solving the problems of today's cities", Tunnelling and Underground Space Technology, Vol. 55, pp. 245-248.

10.1016/j.tust.2015.11.012
6

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002), "SMOTE: Synthetic minority over-sampling technique", Journal of Artificial Intelligence Research, Vol. 16, pp. 321-357.

10.1613/jair.953
7

Chen, J., Huang, H., Cohn, A.G., Zhang, D., Zhou, M. (2022), "Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning", International Journal of Mining Science and Technology, Vol. 32, No. 2, pp. 309-322.

10.1016/j.ijmst.2021.08.004
8

Chen, T., Guestrin, C. (2016), "Xgboost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785-794.

10.1145/2939672.2939785
9

Farrokh, E. (2018), "Introducing hard rock TBMs' downtime analysis model with reference to past case histories' data", Journal of Mining and Environment, Vol. 9, No. 2, pp. 457-472.

10.22044/jme.2018.6815.1509
10

Frenzel, C., Käsling, H., Thuro, K. (2008), "Factors influencing disc cutter wear", Geomechanics and Tunnelling, Vol. 1, No. 1, pp. 55-60.

10.1002/geot.200800006
11

Gao, B., Wang, R., Lin, C., Guo, X., Liu, B., Zhang, W. (2021), "TBM penetration rate prediction based on the long short-term memory neural network", Underground Space, Vol. 6, No. 6, pp. 718-731.

10.1016/j.undsp.2020.01.003
12

Ghorbani, E., Yagiz, S. (2024), "Estimating the penetration rate of tunnel boring machines via gradient boosting algorithms", Engineering Applications of Artificial Intelligence, Vol. 136, 108985.

10.1016/j.engappai.2024.108985
13

Gong, Q.M., Zhao, J. (2009), "Development of a rock mass characteristics model for TBM penetration rate prediction", International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 1, pp. 8-18.

10.1016/j.ijrmms.2008.03.003
14

Grima, M.A., Bruines, P.A., Verhoef, P.N.W. (2000), "Modeling tunnel boring machine performance by neuro-fuzzy methods", Tunnelling and Underground Space Technology, Vol. 15, No. 3, pp. 259-269.

10.1016/S0886-7798(00)00055-9
15

Hyun, K.C., Min, S., Choi, H., Park, J., Lee, I.M. (2015), "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels", Tunnelling and Underground Space Technology, Vol. 49, pp. 121-129.

10.1016/j.tust.2015.04.007
16

Jamshidi, A. (2018), "Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis", Modeling Earth Systems and Environment, Vol. 4, pp. 383-394.

10.1007/s40808-018-0432-2
17

Kim, D., Kwon, K., Pham, K., Oh, J.Y., Choi, H. (2022), "Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization", Automation in Construction, Vol. 140, 104331.

10.1016/j.autcon.2022.104331
18

Kwon, K., Choi, H., Hwang, C., Park, S., Hwang, B. (2024a), "Risk assessment for development of consecutive shield TBM technology", Journal of Korean Tunnelling and Underground Space Association, Vol. 26, No. 4, pp. 303-314.

10.9711/KTAJ.2024.26.4.303
19

Kwon, K., Choi, H., Jung, J., Kim, D., Shin, Y.J. (2024b), "Prediction of abnormal TBM disc cutter wear in mixed ground condition using interpretable machine learning with data augmentation", Journal of Rock Mechanics and Geotechnical Engineering.

10.1016/j.jrmge.2024.05.027
20

Kwon, K., Choi, H., Oh, J.Y., Kim, D. (2022), "A study on EPB shield TBM face pressure prediction using machine learning algorithms", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 2, pp. 217-230.

10.9711/KTAJ.2022.24.2.217
21

Kwon, K., Choi, H., Pham, K., Kim, S., Bae, A. (2024c), "Influence analysis of pavement distress on international roughness index using machine learning", KSCE Journal of Civil Engineering, pp. 1-12.

10.1007/s12205-024-0093-9
22

Liu, Y., Yu, Z., Chen, C., Han, Y., Yu, B. (2020), "Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net", Analytical Biochemistry, Vol. 609, 113903.

10.1016/j.ab.2020.113903
23

Liu, Z., Li, L., Fang, X., Qi, W., Shen, J., Zhou, H., Zhang, Y. (2021), "Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network", Automation in Construction, Vol. 125, 103647.

10.1016/j.autcon.2021.103647
24

Mahdevari, S., Shahriar, K., Yagiz, S., Shirazi, M.A. (2014), "A support vector regression model for predicting tunnel boring machine penetration rates", International Journal of Rock Mechanics and Mining Sciences, Vol. 72, pp. 214-229.

10.1016/j.ijrmms.2014.09.012
25

Moharrami, S., Bayat, A., AbouRizk, S. (2022), "Modeling microtunnel boring machine penetration rate using a mechanistic approach", Journal of Construction Engineering and Management, Vol. 148, No. 11, 04022128.

10.1061/(ASCE)CO.1943-7862.0002402
26

Moon, J.S., Kim, H.K., An, J.W., Lee, J.G. (2020), "A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 1, pp. 107-120.

10.9711/KTAJ.2020.22.1.107
27

Pham, K., Kim, D., Le, C.V., Won, J. (2023), "Machine learning-based pedotransfer functions to predict soil water characteristics curves", Transportation Geotechnics, Vol. 42, 101052.

10.1016/j.trgeo.2023.101052
28

Rezapour, M. (2021), "Sentiment classification of skewed shoppers' reviews using machine learning techniques, examining the textual features", Engineering Reports, Vol. 3, No. 1, e12280.

10.1002/eng2.12280
29

Song, C., Peng, H., Xu, L., Zhao, T., Guo, Z., Chen, W. (2024), "Probabilistic evaluation of cultural soil heritage hazards in China from extremely imbalanced site investigation data using SMOTE-Gaussian process classification", Journal of Cultural Heritage, Vol. 67, pp. 121-133.

10.1016/j.culher.2024.02.014
30

Tóth, Á., Gong, Q., Zhao, J. (2013), "Case studies of TBM tunneling performance in rock-soil interface mixed ground", Tunnelling and Underground Space Technology, Vol. 38, pp. 140-150.

10.1016/j.tust.2013.06.001
31

Vergara, I.M., Saroglou, C. (2017), "Prediction of TBM performance in mixed-face ground conditions", Tunnelling and Underground Space Technology, Vol. 69, pp. 116-124.

10.1016/j.tust.2017.06.015
32

Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J., Tahir, M.M. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Applied Sciences, Vol. 9, No. 18, 3715.

10.3390/app9183715
33

Xue, Y.D., Luo, W., Chen, L., Dong, H.X., Shu, L.S., Zhao, L. (2023), "An intelligent method for TBM surrounding rock classification based on time series segmentation of rock-machine interaction data", Tunnelling and Underground Space Technology, Vol. 140, 105317.

10.1016/j.tust.2023.105317
34

Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S. (2009), "Application of two non-linear prediction tools to the estimation of tunnel boring machine performance", Engineering Applications of Artificial Intelligence, Vol. 22, No. 4-5, pp. 808-814.

10.1016/j.engappai.2009.03.007
35

Yang, J., Yagiz, S., Liu, Y.J., Laouafa, F. (2022), "Comprehensive evaluation of machine learning algorithms applied to TBM performance prediction", Underground Space, Vol. 7, No. 1, pp. 37-49.

10.1016/j.undsp.2021.04.003
36

Yu, L., Liu, H. (2004), "Efficient feature selection via analysis of relevance and redundancy", Journal of Machine Learning Research, Vol. 5, 1205-1224.

37

Zhou, J., Qiu, Y., Armaghani, D.J., Zhang, W., Li, C., Zhu, S., Tarinejad, R. (2021), "Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques", Geoscience Frontiers, Vol. 12, No. 3, 101091.

10.1016/j.gsf.2020.09.020
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 26
  • No :5
  • Pages :519-532
  • Received Date : 2024-08-05
  • Revised Date : 2024-08-26
  • Accepted Date : 2024-08-26