Research Paper
Agrawal, A.K., Murthy, V.M.S.R., Chattopadhyaya, S., Raina, A.K. (2022), "Prediction of TBM disc cutter wear and penetration rate in tunneling through hard and abrasive rock using multi-layer shallow neural network and response surface methods", Rock Mechanics and Rock Engineering, Vol. 55, No. 6, pp. 3489-3506.
10.1007/s00603-022-02834-7Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunnelling and Underground Space Technology, Vol. 63, pp. 29-43.
10.1016/j.tust.2016.12.009Bae, S., Ham, S., Lee, I., Lee, G.P., Kim, D. (2022), "Deep learning based crack detection from tunnel cement concrete lining", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 6, pp. 583-598.
10.9711/KTAJ.2022.24.6.583Benardos, A.G., Kaliampakos, D.C. (2004), "Modelling TBM performance with artificial neural networks", Tunnelling and Underground Space Technology, Vol. 19, No. 6, pp. 597-605.
10.1016/j.tust.2004.02.128Broere, W. (2016), "Urban underground space: solving the problems of today's cities", Tunnelling and Underground Space Technology, Vol. 55, pp. 245-248.
10.1016/j.tust.2015.11.012Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002), "SMOTE: Synthetic minority over-sampling technique", Journal of Artificial Intelligence Research, Vol. 16, pp. 321-357.
10.1613/jair.953Chen, J., Huang, H., Cohn, A.G., Zhang, D., Zhou, M. (2022), "Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning", International Journal of Mining Science and Technology, Vol. 32, No. 2, pp. 309-322.
10.1016/j.ijmst.2021.08.004Chen, T., Guestrin, C. (2016), "Xgboost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785-794.
10.1145/2939672.2939785Farrokh, E. (2018), "Introducing hard rock TBMs' downtime analysis model with reference to past case histories' data", Journal of Mining and Environment, Vol. 9, No. 2, pp. 457-472.
10.22044/jme.2018.6815.1509Frenzel, C., Käsling, H., Thuro, K. (2008), "Factors influencing disc cutter wear", Geomechanics and Tunnelling, Vol. 1, No. 1, pp. 55-60.
10.1002/geot.200800006Gao, B., Wang, R., Lin, C., Guo, X., Liu, B., Zhang, W. (2021), "TBM penetration rate prediction based on the long short-term memory neural network", Underground Space, Vol. 6, No. 6, pp. 718-731.
10.1016/j.undsp.2020.01.003Ghorbani, E., Yagiz, S. (2024), "Estimating the penetration rate of tunnel boring machines via gradient boosting algorithms", Engineering Applications of Artificial Intelligence, Vol. 136, 108985.
10.1016/j.engappai.2024.108985Gong, Q.M., Zhao, J. (2009), "Development of a rock mass characteristics model for TBM penetration rate prediction", International Journal of Rock Mechanics and Mining Sciences, Vol. 46, No. 1, pp. 8-18.
10.1016/j.ijrmms.2008.03.003Grima, M.A., Bruines, P.A., Verhoef, P.N.W. (2000), "Modeling tunnel boring machine performance by neuro-fuzzy methods", Tunnelling and Underground Space Technology, Vol. 15, No. 3, pp. 259-269.
10.1016/S0886-7798(00)00055-9Hyun, K.C., Min, S., Choi, H., Park, J., Lee, I.M. (2015), "Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels", Tunnelling and Underground Space Technology, Vol. 49, pp. 121-129.
10.1016/j.tust.2015.04.007Jamshidi, A. (2018), "Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis", Modeling Earth Systems and Environment, Vol. 4, pp. 383-394.
10.1007/s40808-018-0432-2Kim, D., Kwon, K., Pham, K., Oh, J.Y., Choi, H. (2022), "Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization", Automation in Construction, Vol. 140, 104331.
10.1016/j.autcon.2022.104331Kwon, K., Choi, H., Hwang, C., Park, S., Hwang, B. (2024a), "Risk assessment for development of consecutive shield TBM technology", Journal of Korean Tunnelling and Underground Space Association, Vol. 26, No. 4, pp. 303-314.
10.9711/KTAJ.2024.26.4.303Kwon, K., Choi, H., Jung, J., Kim, D., Shin, Y.J. (2024b), "Prediction of abnormal TBM disc cutter wear in mixed ground condition using interpretable machine learning with data augmentation", Journal of Rock Mechanics and Geotechnical Engineering.
10.1016/j.jrmge.2024.05.027Kwon, K., Choi, H., Oh, J.Y., Kim, D. (2022), "A study on EPB shield TBM face pressure prediction using machine learning algorithms", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 2, pp. 217-230.
10.9711/KTAJ.2022.24.2.217Kwon, K., Choi, H., Pham, K., Kim, S., Bae, A. (2024c), "Influence analysis of pavement distress on international roughness index using machine learning", KSCE Journal of Civil Engineering, pp. 1-12.
10.1007/s12205-024-0093-9Liu, Y., Yu, Z., Chen, C., Han, Y., Yu, B. (2020), "Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net", Analytical Biochemistry, Vol. 609, 113903.
10.1016/j.ab.2020.113903Liu, Z., Li, L., Fang, X., Qi, W., Shen, J., Zhou, H., Zhang, Y. (2021), "Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network", Automation in Construction, Vol. 125, 103647.
10.1016/j.autcon.2021.103647Mahdevari, S., Shahriar, K., Yagiz, S., Shirazi, M.A. (2014), "A support vector regression model for predicting tunnel boring machine penetration rates", International Journal of Rock Mechanics and Mining Sciences, Vol. 72, pp. 214-229.
10.1016/j.ijrmms.2014.09.012Moharrami, S., Bayat, A., AbouRizk, S. (2022), "Modeling microtunnel boring machine penetration rate using a mechanistic approach", Journal of Construction Engineering and Management, Vol. 148, No. 11, 04022128.
10.1061/(ASCE)CO.1943-7862.0002402Moon, J.S., Kim, H.K., An, J.W., Lee, J.G. (2020), "A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 1, pp. 107-120.
10.9711/KTAJ.2020.22.1.107Pham, K., Kim, D., Le, C.V., Won, J. (2023), "Machine learning-based pedotransfer functions to predict soil water characteristics curves", Transportation Geotechnics, Vol. 42, 101052.
10.1016/j.trgeo.2023.101052Rezapour, M. (2021), "Sentiment classification of skewed shoppers' reviews using machine learning techniques, examining the textual features", Engineering Reports, Vol. 3, No. 1, e12280.
10.1002/eng2.12280Song, C., Peng, H., Xu, L., Zhao, T., Guo, Z., Chen, W. (2024), "Probabilistic evaluation of cultural soil heritage hazards in China from extremely imbalanced site investigation data using SMOTE-Gaussian process classification", Journal of Cultural Heritage, Vol. 67, pp. 121-133.
10.1016/j.culher.2024.02.014Tóth, Á., Gong, Q., Zhao, J. (2013), "Case studies of TBM tunneling performance in rock-soil interface mixed ground", Tunnelling and Underground Space Technology, Vol. 38, pp. 140-150.
10.1016/j.tust.2013.06.001Vergara, I.M., Saroglou, C. (2017), "Prediction of TBM performance in mixed-face ground conditions", Tunnelling and Underground Space Technology, Vol. 69, pp. 116-124.
10.1016/j.tust.2017.06.015Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J., Tahir, M.M. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Applied Sciences, Vol. 9, No. 18, 3715.
10.3390/app9183715Xue, Y.D., Luo, W., Chen, L., Dong, H.X., Shu, L.S., Zhao, L. (2023), "An intelligent method for TBM surrounding rock classification based on time series segmentation of rock-machine interaction data", Tunnelling and Underground Space Technology, Vol. 140, 105317.
10.1016/j.tust.2023.105317Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S. (2009), "Application of two non-linear prediction tools to the estimation of tunnel boring machine performance", Engineering Applications of Artificial Intelligence, Vol. 22, No. 4-5, pp. 808-814.
10.1016/j.engappai.2009.03.007Yang, J., Yagiz, S., Liu, Y.J., Laouafa, F. (2022), "Comprehensive evaluation of machine learning algorithms applied to TBM performance prediction", Underground Space, Vol. 7, No. 1, pp. 37-49.
10.1016/j.undsp.2021.04.003- Publisher :Korean Tunneling and Underground Space Association
- Publisher(Ko) :한국터널지하공간학회
- Journal Title :Journal of Korean Tunnelling and Underground Space Association
- Journal Title(Ko) :한국터널지하공간학회 논문집
- Volume : 26
- No :5
- Pages :519-532
- Received Date : 2024-08-05
- Revised Date : 2024-08-26
- Accepted Date : 2024-08-26
- DOI :https://doi.org/10.9711/KTAJ.2024.26.5.519