All Issue

2024 Vol.26, Issue 6 Preview Page

Research Paper

30 November 2024. pp. 633-645
Abstract
References
1

Bianchi, E., Hebdon, M. (2021), "Concrete crack conglomerate dataset", University Libraries, Virginia Tech, Dataset.

2

Chen, X., Yuan, Y., Zeng, G., Wang, J. (2021), "Semi-supervised semantic segmentation with cross pseudo supervision", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, pp. 2613-2622.

10.1109/CVPR46437.2021.00264
3

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014), "Generative adversarial nets", Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, Canada, pp. 2672-2680.

4

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S. (2017), "Gans trained by a two time-scale update rule converge to a local nash equilibrium", Proceedings of the Advances in Neural Information Processing Systems, Vol. 30, Long Beach, CA, USA, 6626-6637.

5

Hsieh, Y.A., Tsai, Y.J. (2020), "Machine learning for crack detection: review and model performance comparison", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020038.

10.1061/(ASCE)CP.1943-5487.0000918
6

Huang, B., Kang, F., Li, X., Zhu, S. (2024), "Underwater dam crack image generation based on unsupervised image-to-image translation", Automation in Construction, Vol. 163, 105430.

10.1016/j.autcon.2024.105430
7

Lee, S.Y., Lee, S.H., Shin, D.I., Son, Y.K., Han, C.S. (2007), "Development of an inspection system for cracks in a concrete tunnel lining", Canadian Journal of Civil Engineering, Vol. 34, No. 8, pp. 966-975.

10.1139/l07-008
8

Lei, M., Liu, L., Shi, C., Tan, Y., Lin, Y., Wang, W. (2021), "A novel tunnel-lining crack recognition system based on digital image technology", Tunnelling and Underground Space Technology, Vol. 108, 103724.

10.1016/j.tust.2020.103724
9

Li, G., Ma, B., He, S., Ren, X., Liu, Q. (2020), "Automatic tunnel crack detection based on U-Net and a convolutional neural network with alternately updated clique", Sensors, Vol. 20, No. 3, 717.

10.3390/s2003071732012919PMC7038519
10

Li, S., Zhao, X. (2023), "High-resolution concrete damage image synthesis using conditional generative adversarial network", Automation in Construction, Vol. 147, 104739.

10.1016/j.autcon.2022.104739
11

Liu, J., Zhou, Q., Qiang, Y., Kang, B., Wu, X., Zheng, B. (2020), "FDDWNet: a lightweight convolutional neural network for real-time semantic segmentation", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, pp. 2373-2377.

10.1109/ICASSP40776.2020.9053838
12

Lynch, J.P., Farrar, C.R., Michaels, J.E. (2016), "Structural health monitoring: technological advances to practical implementations [scanning the issue]", Proceedings of the IEEE, Vol. 104, No. 8, pp. 1508-1512.

10.1109/JPROC.2016.2588818
13

Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T., Omata, H. (2021), "Generative adversarial network for road damage detection", Computer-Aided Civil and Infrastructure Engineering, Vol. 36, No. 1, pp. 47-60.

10.1111/mice.12561
14

Munawar, H.S., Hammad, A.W.A., Haddad, A., Soares, C.A.P., Waller, S.T. (2021), "Image-based crack detection methods: a review", Infrastructures, Vol. 6, No. 8, 115.

10.3390/infrastructures6080115
15

Phares, B.M., Washer, G.A., Rolander, D.D., Graybeal, B.A., Moore, M. (2004), "Routine highway bridge inspection condition documentation accuracy and reliability", Journal of Bridge Engineering, Vol. 9, No. 4, pp. 403-413.

10.1061/(ASCE)1084-0702(2004)9:4(403)
16

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B. (2022), "High-resolution image synthesis with latent diffusion models", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, pp. 10684-10695.

10.1109/CVPR52688.2022.01042
17

Shim, S. (2022), "CycleGAN based translation method between asphalt and concrete crack images for data augmentation", The Journal of The Korea Institute of Intelligent Transport Systems, Vol. 21, No. 5, pp. 171-182.

10.12815/kits.2022.21.5.171
18

Shim, S. (2024), "Self-training approach for crack detection using synthesized crack images based on conditional generative adversarial network", Computer-Aided Civil and Infrastructure Engineering, Vol. 39, No. 7, pp. 1019-1041.

10.1111/mice.13119
19

Zhang, K., Zhang, Y., Cheng, H.D. (2020), "Self-supervised structure learning for crack detection based on cycle-consistent generative adversarial networks", Journal of Computing in Civil Engineering, Vol. 34, No. 3, 04020004.

10.1061/(ASCE)CP.1943-5487.0000883
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 26
  • No :6
  • Pages :633-645
  • Received Date : 2024-09-12
  • Revised Date : 2024-10-21
  • Accepted Date : 2024-10-28