Research Paper
Bianchi, E., Hebdon, M. (2021), "Concrete crack conglomerate dataset", University Libraries, Virginia Tech, Dataset.
Chen, X., Yuan, Y., Zeng, G., Wang, J. (2021), "Semi-supervised semantic segmentation with cross pseudo supervision", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, pp. 2613-2622.
10.1109/CVPR46437.2021.00264Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014), "Generative adversarial nets", Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, Canada, pp. 2672-2680.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S. (2017), "Gans trained by a two time-scale update rule converge to a local nash equilibrium", Proceedings of the Advances in Neural Information Processing Systems, Vol. 30, Long Beach, CA, USA, 6626-6637.
Hsieh, Y.A., Tsai, Y.J. (2020), "Machine learning for crack detection: review and model performance comparison", Journal of Computing in Civil Engineering, Vol. 34, No. 5, 04020038.
10.1061/(ASCE)CP.1943-5487.0000918Huang, B., Kang, F., Li, X., Zhu, S. (2024), "Underwater dam crack image generation based on unsupervised image-to-image translation", Automation in Construction, Vol. 163, 105430.
10.1016/j.autcon.2024.105430Lee, S.Y., Lee, S.H., Shin, D.I., Son, Y.K., Han, C.S. (2007), "Development of an inspection system for cracks in a concrete tunnel lining", Canadian Journal of Civil Engineering, Vol. 34, No. 8, pp. 966-975.
10.1139/l07-008Lei, M., Liu, L., Shi, C., Tan, Y., Lin, Y., Wang, W. (2021), "A novel tunnel-lining crack recognition system based on digital image technology", Tunnelling and Underground Space Technology, Vol. 108, 103724.
10.1016/j.tust.2020.103724Li, G., Ma, B., He, S., Ren, X., Liu, Q. (2020), "Automatic tunnel crack detection based on U-Net and a convolutional neural network with alternately updated clique", Sensors, Vol. 20, No. 3, 717.
10.3390/s2003071732012919PMC7038519Li, S., Zhao, X. (2023), "High-resolution concrete damage image synthesis using conditional generative adversarial network", Automation in Construction, Vol. 147, 104739.
10.1016/j.autcon.2022.104739Liu, J., Zhou, Q., Qiang, Y., Kang, B., Wu, X., Zheng, B. (2020), "FDDWNet: a lightweight convolutional neural network for real-time semantic segmentation", Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, pp. 2373-2377.
10.1109/ICASSP40776.2020.9053838Lynch, J.P., Farrar, C.R., Michaels, J.E. (2016), "Structural health monitoring: technological advances to practical implementations [scanning the issue]", Proceedings of the IEEE, Vol. 104, No. 8, pp. 1508-1512.
10.1109/JPROC.2016.2588818Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T., Omata, H. (2021), "Generative adversarial network for road damage detection", Computer-Aided Civil and Infrastructure Engineering, Vol. 36, No. 1, pp. 47-60.
10.1111/mice.12561Munawar, H.S., Hammad, A.W.A., Haddad, A., Soares, C.A.P., Waller, S.T. (2021), "Image-based crack detection methods: a review", Infrastructures, Vol. 6, No. 8, 115.
10.3390/infrastructures6080115Phares, B.M., Washer, G.A., Rolander, D.D., Graybeal, B.A., Moore, M. (2004), "Routine highway bridge inspection condition documentation accuracy and reliability", Journal of Bridge Engineering, Vol. 9, No. 4, pp. 403-413.
10.1061/(ASCE)1084-0702(2004)9:4(403)Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B. (2022), "High-resolution image synthesis with latent diffusion models", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, pp. 10684-10695.
10.1109/CVPR52688.2022.01042Shim, S. (2022), "CycleGAN based translation method between asphalt and concrete crack images for data augmentation", The Journal of The Korea Institute of Intelligent Transport Systems, Vol. 21, No. 5, pp. 171-182.
10.12815/kits.2022.21.5.171- Publisher :Korean Tunneling and Underground Space Association
- Publisher(Ko) :한국터널지하공간학회
- Journal Title :Journal of Korean Tunnelling and Underground Space Association
- Journal Title(Ko) :한국터널지하공간학회 논문집
- Volume : 26
- No :6
- Pages :633-645
- Received Date : 2024-09-12
- Revised Date : 2024-10-21
- Accepted Date : 2024-10-28
- DOI :https://doi.org/10.9711/KTAJ.2024.26.6.633