All Issue

2022 Vol.24, Issue 4 Preview Page

Research Paper

31 July 2022. pp. 341-353
Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M.T.C., Nguyen, V.T., Eriksen, A. (2000), "Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition", Journal of applied Geophysics, Vol. 43, No. 2-4, pp. 157-165. 10.1016/S0926-9851(99)00055-5
Benedetto, A., Pajewski, L. (2015), Civil Engineering Applications of Ground Penetrating Radar, Springer, London, pp. i-xi. 10.1007/978-3-319-04813-0
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M. (2020), "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934, pp. 1-17.
Chae, J.H., Ko, H.Y., Lee, B.G., Kim, N.G. (2019), "A study on the pipe position estimation in GPR images using deep learning based convolutional neural network", Journal of Internet Computing and Services, Vol. 20, No. 4, pp. 39-46.
Fang, Y., Guo, X., Chen, K., Zhou, Z., Ye, Q. (2021), "Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model", BioResources, Vol. 16, No. 3, pp. 5390-5406. 10.15376/biores.16.3.5390-5406
Giannakis, I. (2016), Realistic numerical modelling of ground penetrating radar for landmine detection, Ph.D. Thesis, University of Edinburgh, pp. 1-268.
Giannopoulos, A. (1998), The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of ground probing radar, Ph.D. Thesis, University of York, pp. 1-258.
Giannopoulos, A. (2005), "Modelling ground penetrating radar by GprMax", Construction and Building Materials, Vol. 19, No. 10, pp. 755-762. 10.1016/j.conbuildmat.2005.06.007
Kim, H.M., Bae, H.R. (2021), "A study on GPR image classification by semi-supervised learning with CNN", The Journal of Bigdata, Vol. 6, No. 1, pp. 197-206.
Lee, D.Y. (2018), "Analysis of sewer pipe defect and ground subsidence risk by using CCTV and GPR monitering results", Journal of the Korean Geosynthetics Society, Vol. 17, No. 3, pp. 47-55.
Peplinski, N.R., Ulaby, F.T., Dobson, M.C. (1995), "Dielectric properties of soils in the 0.3-1.3-GHz range", IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, pp. 803-807. 10.1109/36.387598
Pham, M.T., Lefèvre, S. (2018), "Buried object detection from B-scan ground penetrating radar data using Faster-RCNN", Proceedings of the IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp. 6804-6807. 10.1109/IGARSS.2018.8517683
Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016), "You only look once: Unified, real-time object detection", Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788. 10.1109/CVPR.2016.91
Taflove, A., Hagness, S.C., Piket-May, M. (2005), Computational Electrodynamics: The Finite-Difference Time-Domain Method, The Electrical Engineering Handbook, 3, Elsevier, Burlington, pp. 629-670. 10.1016/B978-012170960-0/50046-3
Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z. (2019), "Apple detection during different growth stages in orchards using the improved YOLO-V3 model", Computers and Electronics in Agriculture, Vol. 157, pp. 417-426. 10.1016/j.compag.2019.01.012
Warren, C., Giannopoulos, A. gprMax user guide, (Apr 14, 2022)
Warren, C., Giannopoulos, A., Giannakis, I. (2016), "gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar", Computer Physics Communications, Vol. 209, pp. 163-170. 10.1016/j.cpc.2016.08.020
Yuan, C., Li, S., Cai, H., Kamat, V.R. (2018), "GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration", Journal of Computing in Civil Engineering, Vol. 32, No. 4, pp. 1-15. 10.1061/(ASCE)CP.1943-5487.0000764
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 24
  • No :4
  • Pages :341-353
  • Received Date :2022. 06. 28
  • Revised Date :2022. 07. 15
  • Accepted Date : 2022. 07. 18