All Issue

2024 Vol.26, Issue 6 Preview Page

Research Paper

30 November 2024. pp. 713-728
Abstract
References
1

Cha, Y.J., Choi, W., Büyüköztürk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Computer-Aided Civil and Infrastructure Engineering, Vol. 32, No. 5, pp. 361-378.

10.1111/mice.12263
2

Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M. (2023), "Diffusion models in vision: a survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 9, pp. 10850-10869.

10.1109/TPAMI.2023.326198837030794
3

Ding, K., Ma, K., Wang, S., Simoncelli, E.P. (2022), "Image quality assessment: unifying structure and texture similarity", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 5, pp. 2567-2581.

10.1109/TPAMI.2020.3045810
4

Dong, C., Loy, C.C., He, K., Tang, X. (2016), "Image super-resolution using deep convolutional networks", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, pp. 295-307.

10.1109/TPAMI.2015.243928126761735
5

Gilman, A., Bailey, D.G., Marsland, S.R. (2008), "Interpolation models for image super-resolution", Proceedings of the 4th IEEE International Symposium on Electronic Design, Test and Applications, Hong Kong, pp. 55-60.

10.1109/DELTA.2008.104
6

Kim, J., Shim, S., Cha, Y., Cho, G.C. (2021), "Lightweight pixel-wise segmentation for efficient concrete crack detection using hierarchical convolutional neural network", Smart Materials and Structures, Vol. 30, No. 4, 045023.

10.1088/1361-665X/abea1e
7

Kulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R. (2023), "CrackSeg9k: a collection and benchmark for crack segmentation datasets and frameworks", Proceedings of the Computer Vision - ECCV 2022 Workshops, Lecture Notes in Computer Science, Vol. 13807, Tel Aviv, pp. 179-195.

10.1007/978-3-031-25082-8_12
8

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W. (2017) "Photo-realistic single image super-resolution using a generative adversarial network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 4681-4690.

10.1109/CVPR.2017.19
9

Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R. (2021), "Swinir: Image restoration using swin transformer", Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Montreal, pp. 1833-1844.

10.1109/ICCVW54120.2021.00210
10

Liu, Y., Yao, J., Lu, X., Xie, R., Li, L. (2019), "DeepCrack: a deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, Vol. 338, pp. 139-153.

10.1016/j.neucom.2019.01.036
11

Long, J., Shelhamer, E., Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 3431-3440.

10.1109/CVPR.2015.7298965
12

Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., Zeng, T. (2022), "Transformer for single image super-resolution", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, pp. 457-466.

10.1109/CVPRW56347.2022.00061
13

Maguire, M., Dorafshan, S., Thomas, R.J. (2018), "SDNET2018: a concrete crack image dataset for machine learning applications", Utah State University.

14

MOLIT, KALIS (2023), Detailed guidelines for the safety control and maintenance of establishments, Ministry of Land, Infrastructure and Transport, Korea Authority of Land & Infrastructure Safety.

15

Ozgenel, F. (2018), "Concrete crack images for classification", Mendeley data-v1.

16

Pan, Y., Zhang, G., Zhang, L. (2020), "A spatial-channel hierarchical deep learning network for pixel-level automated crack detection", Automation in Construction, Vol. 119, 103357.

10.1016/j.autcon.2020.103357
17

Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L., Shen, X. (2020), "Image-based concrete crack detection in tunnels using deep fully convolutional networks", Construction and Building Materials, Vol. 234, 117367.

10.1016/j.conbuildmat.2019.117367
18

Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R. (2018), "ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation", IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 1, pp. 263-272.

10.1109/TITS.2017.2750080
19

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M. (2023), "Image super-resolution via iterative refinement", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 4, pp. 4713-4726.

10.1109/TPAMI.2022.3204461
20

Sheikh, H.R., Bovik, A.C. (2006), "Image information and visual quality", IEEE Transactions on Image Processing, Vol. 15, No. 2, pp. 430-444.

10.1109/TIP.2005.85937816479813
21

Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu, X., Latecki, L.J. (2019), "LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation", Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, pp. 1860-1864.

10.1109/ICIP.2019.8803154
22

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004), "Image quality assessment: from error visibility to structural similarity", IEEE Transactions on Image Processing, Vol. 13, No. 4, pp. 600-612.

10.1109/TIP.2003.81986115376593
23

Wang, Z., Chen, J., Hoi, S.C.H. (2021), "Deep learning for image super-resolution: a survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 10, pp. 3365-3387.

10.1109/TPAMI.2020.298216632217470
24

Wu, T., Tang, S., Zhang, R., Cao, J., Zhang, Y. (2021), "CGNet: A light-weight context guided network for semantic segmentation", IEEE Transactions on Image Processing, Vol. 30, pp. 1169-1179.

10.1109/TIP.2020.304206533306466
25

Yamaguchi, T., Hashimoto, S. (2010), "Fast crack detection method for large-size concrete surface images using percolation-based image processing", Machine Vision and Applications, Vol. 21, No. 5, pp. 797-809.

10.1007/s00138-009-0189-8
26

Yu, Z., Shen, Y., Sun, Z., Chen, J., Gang, W. (2022), "Cracklab: a high-precision and efficient concrete crack segmentation and quantification network", Developments in the Built Environment, Vol. 12, 100088.

10.1016/j.dibe.2022.100088
27

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O. (2018), "The unreasonable effectiveness of deep features as a perceptual metric", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586-595.

10.1109/CVPR.2018.00068
Information
  • Publisher :Korean Tunneling and Underground Space Association
  • Publisher(Ko) :한국터널지하공간학회
  • Journal Title :Journal of Korean Tunnelling and Underground Space Association
  • Journal Title(Ko) :한국터널지하공간학회 논문집
  • Volume : 26
  • No :6
  • Pages :713-728
  • Received Date : 2024-10-14
  • Revised Date : 2024-10-31
  • Accepted Date : 2024-10-31