Research Paper
Cha, Y.J., Choi, W., Büyüköztürk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Computer-Aided Civil and Infrastructure Engineering, Vol. 32, No. 5, pp. 361-378.
10.1111/mice.12263Croitoru, F.A., Hondru, V., Ionescu, R.T., Shah, M. (2023), "Diffusion models in vision: a survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 9, pp. 10850-10869.
10.1109/TPAMI.2023.326198837030794Ding, K., Ma, K., Wang, S., Simoncelli, E.P. (2022), "Image quality assessment: unifying structure and texture similarity", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, No. 5, pp. 2567-2581.
10.1109/TPAMI.2020.3045810Dong, C., Loy, C.C., He, K., Tang, X. (2016), "Image super-resolution using deep convolutional networks", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, pp. 295-307.
10.1109/TPAMI.2015.243928126761735Gilman, A., Bailey, D.G., Marsland, S.R. (2008), "Interpolation models for image super-resolution", Proceedings of the 4th IEEE International Symposium on Electronic Design, Test and Applications, Hong Kong, pp. 55-60.
10.1109/DELTA.2008.104Kim, J., Shim, S., Cha, Y., Cho, G.C. (2021), "Lightweight pixel-wise segmentation for efficient concrete crack detection using hierarchical convolutional neural network", Smart Materials and Structures, Vol. 30, No. 4, 045023.
10.1088/1361-665X/abea1eKulkarni, S., Singh, S., Balakrishnan, D., Sharma, S., Devunuri, S., Korlapati, S.C.R. (2023), "CrackSeg9k: a collection and benchmark for crack segmentation datasets and frameworks", Proceedings of the Computer Vision - ECCV 2022 Workshops, Lecture Notes in Computer Science, Vol. 13807, Tel Aviv, pp. 179-195.
10.1007/978-3-031-25082-8_12Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W. (2017) "Photo-realistic single image super-resolution using a generative adversarial network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 4681-4690.
10.1109/CVPR.2017.19Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R. (2021), "Swinir: Image restoration using swin transformer", Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Montreal, pp. 1833-1844.
10.1109/ICCVW54120.2021.00210Liu, Y., Yao, J., Lu, X., Xie, R., Li, L. (2019), "DeepCrack: a deep hierarchical feature learning architecture for crack segmentation", Neurocomputing, Vol. 338, pp. 139-153.
10.1016/j.neucom.2019.01.036Long, J., Shelhamer, E., Darrell, T. (2015), "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 3431-3440.
10.1109/CVPR.2015.7298965Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., Zeng, T. (2022), "Transformer for single image super-resolution", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, pp. 457-466.
10.1109/CVPRW56347.2022.00061Maguire, M., Dorafshan, S., Thomas, R.J. (2018), "SDNET2018: a concrete crack image dataset for machine learning applications", Utah State University.
MOLIT, KALIS (2023), Detailed guidelines for the safety control and maintenance of establishments, Ministry of Land, Infrastructure and Transport, Korea Authority of Land & Infrastructure Safety.
Pan, Y., Zhang, G., Zhang, L. (2020), "A spatial-channel hierarchical deep learning network for pixel-level automated crack detection", Automation in Construction, Vol. 119, 103357.
10.1016/j.autcon.2020.103357Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L., Shen, X. (2020), "Image-based concrete crack detection in tunnels using deep fully convolutional networks", Construction and Building Materials, Vol. 234, 117367.
10.1016/j.conbuildmat.2019.117367Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R. (2018), "ERFNet: efficient residual factorized ConvNet for real-time semantic segmentation", IEEE Transactions on Intelligent Transportation Systems, Vol. 19, No. 1, pp. 263-272.
10.1109/TITS.2017.2750080Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M. (2023), "Image super-resolution via iterative refinement", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 4, pp. 4713-4726.
10.1109/TPAMI.2022.3204461Sheikh, H.R., Bovik, A.C. (2006), "Image information and visual quality", IEEE Transactions on Image Processing, Vol. 15, No. 2, pp. 430-444.
10.1109/TIP.2005.85937816479813Wang, Y., Zhou, Q., Liu, J., Xiong, J., Gao, G., Wu, X., Latecki, L.J. (2019), "LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation", Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, pp. 1860-1864.
10.1109/ICIP.2019.8803154Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004), "Image quality assessment: from error visibility to structural similarity", IEEE Transactions on Image Processing, Vol. 13, No. 4, pp. 600-612.
10.1109/TIP.2003.81986115376593Wang, Z., Chen, J., Hoi, S.C.H. (2021), "Deep learning for image super-resolution: a survey", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 10, pp. 3365-3387.
10.1109/TPAMI.2020.298216632217470Wu, T., Tang, S., Zhang, R., Cao, J., Zhang, Y. (2021), "CGNet: A light-weight context guided network for semantic segmentation", IEEE Transactions on Image Processing, Vol. 30, pp. 1169-1179.
10.1109/TIP.2020.304206533306466Yamaguchi, T., Hashimoto, S. (2010), "Fast crack detection method for large-size concrete surface images using percolation-based image processing", Machine Vision and Applications, Vol. 21, No. 5, pp. 797-809.
10.1007/s00138-009-0189-8- Publisher :Korean Tunneling and Underground Space Association
- Publisher(Ko) :한국터널지하공간학회
- Journal Title :Journal of Korean Tunnelling and Underground Space Association
- Journal Title(Ko) :한국터널지하공간학회 논문집
- Volume : 26
- No :6
- Pages :713-728
- Received Date : 2024-10-14
- Revised Date : 2024-10-31
- Accepted Date : 2024-10-31
- DOI :https://doi.org/10.9711/KTAJ.2024.26.6.713